1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
3 years ago
10

Please answer this correctly

Mathematics
1 answer:
elena-s [515]3 years ago
8 0

Answer:

30

Step-by-step explanation:

If these two shapes are similar, then ratios of corresponding sides will stay constant. Therefore:

\dfrac{g}{45}=\dfrac{50}{75}

Multiply both sides by 45:

g=\dfrac{50\cdot 45}{75}=30

Hope this helps!

You might be interested in
I have a series of 2 questions.
Margarita [4]
1)
I:y=3x-4
II:9x-3y=14


substitute y into II:
9x-3*(3x-4)=14
9x-9x+12=14
12=14

this is obviously not equal so there is no solution, the lines are parallel

2)
I:y=4x+6
II:5x-y=6

substitute y into II:
5x-(4x+6)=6
5x-4x-6=6
x=12
substiute x into II:
5*12-y=6
-y=6-60
-y=-54
y=54

the solution is (12,54)
3 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
The distance between two cities on a map is 3.5 centimeters. The map uses a scale in which 1
Ostrovityanka [42]

Answer:

it would be 70 kilometers

3 0
3 years ago
Could side D be the base? If so what side would be the hight?
kodGreya [7K]

Answer: Yes, the highest side would be F

4 0
3 years ago
Please help!!! finacial lit! will give brainliest:))
KatRina [158]

Answer:

Step-by-step explanation:

proucer surplus

4 0
3 years ago
Read 2 more answers
Other questions:
  • Given the lengths of two sides of a triangle, find the range for the length of the third side (between what two numbers should t
    11·1 answer
  • Liz wants to buy her favorite musical group's new cd. the cd costs $15.24, including tax. liz gives the store clerk a twenty-dol
    5·1 answer
  • What is the orgins of a line if the slope is -2
    8·1 answer
  • Sebastian scored a 94% on a test. Frankie answered 43 questions correctly out of 50 total questions. Who scored higher on the te
    14·2 answers
  • Show how to solve 304 take away 217
    13·1 answer
  • What is the slope of this line? Enter your answer in the box.
    5·1 answer
  • Equation of a line with slope 1/5 through the point (-5, -4)
    13·1 answer
  • I hope u can help meeeee!!!​
    7·1 answer
  • Help me and i’ll mark brainliest
    10·1 answer
  • Caitlyn pays $2.20 in postage to mail a CD to a friend. She uses 43-cent stamps and 6-cent stamps. How many of each stamp did Ca
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!