The protons and neutrons are located in the nucleus of an atom, while the electrons are located in the orbital cloud. <span />
Answer:
put a salt into the beakers
Hi there!
D is true
the number of protons is same as atomic number in an atom
good luck!
Answer: as the temperature increases, the kinetic energy of the molecules increases
Explanation: The kinetic energy of the molecules is the energy possessed by virtue of motion of the particles.
Kinetic energy of the particles is directly proportional to the temperature of the gas.

where T= temperature
R= gas constant
Thus if the temperature is increased, the molecules start moving more randomly and gain kinetic energy.
Answer:
Volume
Explanation:
Volume is the quantity of three-dimensional space enclosed by a closed surface, for example, the space that a substance (solid, liquid, gas, or plasma) or 3D shape occupies or contains.[1] Volume is often quantified numerically using the SI derived unit, the cubic metre. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. Three dimensional mathematical shapes are also assigned volumes. Volumes of some simple shapes, such as regular, straight-edged, and circular shapes can be easily calculated using arithmetic formulas. Volumes of complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. One-dimensional figures (such as lines) and two-dimensional shapes (such as squares) are assigned zero volume in the three-dimensional space.
The volume of a solid (whether regularly or irregularly shaped) can be determined by fluid displacement. Displacement of liquid can also be used to determine the volume of a gas. The combined volume of two substances is usually greater than the volume of just one of the substances. However, sometimes one substance dissolves in the other and in such cases the combined volume is not additive.[2]
In differential geometry, volume is expressed by means of the volume form, and is an important global Riemannian invariant. In thermodynamics, volume is a fundamental parameter, and is a conjugate variable to pressure.