Answer:
D. Communication of results
Preparing 15 mg/gl working standard solution from a 20 mg/dl stock solution will require the application of the dilution principle.
Recalling the principle:
initial volume x initial molarity = final volume x final molarity
Since we were not given any volume to work with, we can as well just take an arbitrary volume to be prepared. Let's assume that the stock solution is 10 mL and we want to prepare 15 mg/gl from it:
Applying the dilution principle:
10 x 20 = final volume x 15
final volume = 200/15
= 13.33 mL
This means that in order to prepare 13.33 mL, 15 mg/l working standard solution from 10 ml, 20 mg/dl stock solution, 3.33 mL of the diluent must be added to the stock solution.
More on dilution principle can be found here: brainly.com/question/11493179
You first need to write the balanced chemical reaction for what is going on.
Ca(OH)₂+2HCl→2H₂O+CaCl₂
After you make the balanced chemical reaction, First you find the moles of HCl used. To do this multiply 0.0375L by 0.124M to get 0.00465mol HCl. Then you multiply 0.00465mol HCl by (1mol Ca(OH)₂)/(2mol HCl) to get 0.002325mol Ca(OH)₂. Finally to find concentration of Ca(OH)₂ used you divide 0.002325mol by 0.020L to get 0.116M Ca(OH)₂.
Therefore the concentration of the unknown solution of Ca(OH)₂ was 0.116M.
I hope this helps. Let me know if anything is unclear.
There are many pros in using steel. Steel is tensile. It has a high strength to weight ratio which means it has high strength per unit mass. So no matter how large the overall structure is, the steel sections will be small and lightweight, unlike other building materials. Also, steel is very durable. Structural steel structures can withstand external pressures such as earthquakes, thunderstorms, and cyclones.