Answer:vapor
Explanation: Because it is
Earthquakes release seismic waves which can move along a sea.
Answer:
Mean
Explanation:
The mean of a series of measurements is calculated when a<em>ll the measurements are added up and then divided by the number of measurements taken</em>, as follows:
- Sum of Measurements = 20.73 + 20.76 + 20.68 + 20.75 = 82.92
As<u> there are 4 measurements</u>, the mean is:
<u>Answer:</u> The mass of iron in the ore is 10.9 g
<u>Explanation:</u>
We are given:
Mass of iron (III) oxide = 15.6 g
We know that:
Molar mass of Iron (III) oxide = 159.69 g/mol
Molar mass of iron atom = 55.85 g/mol
As, all the iron in the ore is converted to iron (III) oxide. So, the mass of iron in iron (III) oxide will be equal to the mass of iron present in the ore.
To calculate the mass of iron in given mass of iron (III) oxide, we apply unitary method:
In 159.69 g of iron (III) oxide, mass of iron present is
So, in 15.6 g of iron (III) oxide, mass of iron present will be =
Hence, the mass of iron in the ore is 10.9 g
117.22 g are needed to react with an excess of Fe2O3 to produce 156.2 g of Fe.
Explanation:
Moles of Fe = Mass of Fe in grams / Atomic weight of Fe
= 156.2 / 55.847
Moles of Fe = 2.79.
The ratio between CO and Fe id 3 : 2.
Moles CO needed = 2.79 * (3 / 2)
= 4.185.
To calculate Atomic weight of CO,
Atomic weight of carbon = 12.011
Atomic weight of oxygen= 15.9994
Atomic weight of CO = 12.011 + 15.9994 = 28.01 g / mol.
Mass of CO = 4.185 * 28.01 = 117.22 g.