Answer:
-5^x + 3x - 2.
Step-by-step explanation:
(f - g) (x) = f(x) - g(x)
= -5^x - 4 - (-3x - 2)
= -5^x - 4 + 3x + 2
= -5^x + 3x - 2.
Answer:
To see if a table of values represents a linear function, check to see if there's a constant rate of change. If there is, you're looking at a linear function!
Step-by-step explanation:
Supplementary angles are angles that add up to 180 degrees, aka one straight line. The supplementary angles here are:
1 and 2, 1 and 3, 2 and 4, 3 and 4, 5 and 6, 6 and 8, 7 and 8, and 6 and 7. Well, those are the more obvious ones. 1 and 7 are supplementary because if you envision them next to each other, you’ll see that they create a straight line. So, with that logic, 3 and 5 are supplementary because when you put them together, they create a straight line
<span>Simplifying
(6a + -8b)(6a + 8b) = 0
Multiply (6a + -8b) * (6a + 8b)
(6a * (6a + 8b) + -8b * (6a + 8b)) = 0
((6a * 6a + 8b * 6a) + -8b * (6a + 8b)) = 0
Reorder the terms:
((48ab + 36a2) + -8b * (6a + 8b)) = 0
((48ab + 36a2) + -8b * (6a + 8b)) = 0
(48ab + 36a2 + (6a * -8b + 8b * -8b)) = 0
(48ab + 36a2 + (-48ab + -64b2)) = 0
Reorder the terms:
(48ab + -48ab + 36a2 + -64b2) = 0
Combine like terms: 48ab + -48ab = 0
(0 + 36a2 + -64b2) = 0
(36a2 + -64b2) = 0
Solving
36a2 + -64b2 = 0
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '64b2' to each side of the equation.
36a2 + -64b2 + 64b2 = 0 + 64b2
Combine like terms: -64b2 + 64b2 = 0
36a2 + 0 = 0 + 64b2
36a2 = 0 + 64b2
Remove the zero:
36a2 = 64b2
Divide each side by '36'.
a2 = 1.777777778b2
Simplifying
a2 = 1.777777778b2
Take the square root of each side:
a = {-1.333333333b, 1.333333333b}</span>
Step-by-step explanation:
Measure of spread is used in describing the variability in a sample.
Examples of measure of spread are: Mean, Median and Mode.
A measure of spread helps in giving an idea of how well the mean, or mode, or median, whichever of the three measure of spreads we use, represents the data under consideration. If the spread of values in the data set is large, that means there a lot of variation between the values of the data set. It is always better to have a small spread.