1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
3 years ago
5

The famous scientist Galileo Galilei did several experiments with sloping planes, which he rolled metal balls down so that he co

uld study motion. By changing the slope, he could study how the speed at which the ball rolled was affected.
What was one thing Galileo would have needed to control himself to make sure his experiment gave him useful information?

A. the speed of the ball
B. the slope of the plane
C. the pull of Earth's gravity
D. the material the ball was made of
Physics
1 answer:
KatRina [158]3 years ago
5 0
Hi there!

The answer would be B. the slope of the plane.

Changing the slope of the plane would show how fast the ball went when Galileo changed the steepness of the slope. If he didn’t change the slopes steepness he would have the same results each time.

Hope this helps !
You might be interested in
Astronaut mark uri is space-traveling from planet x to planet y at a speed of relative to the planets, which are at rest relativ
lyudmila [28]
<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
5 0
3 years ago
A reservoir located in the mountain 250 m above sea level flows through a pipe to a hydroelectric plant in a town at sea level.
Pavlova-9 [17]

Answer:

     v₂ = 70 m / s

Explanation:

For this exercise let's use Bernoulli's equation

where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level

 

          P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂

indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute

         ρ g y₁ = ½ ρ v₂²

         v₂ = \sqrt {2g \ y_1}

let's calculate

         v₂ = √( 2 9.8 250)

         v₂ = 70 m / s

6 0
3 years ago
A wave transfers:<br> Water<br> particles<br> energy<br> matter
SashulF [63]

Answer:

Particles in a water wave exchange kinetic energy for potential energy. When particles in water become part of a wave, they start to move up or down. This means that kinetic energy (energy of movement) has been transferred to them

Explanation:

hope this helps u ....

<em>pls mark this as the brainliest...</em>

6 0
3 years ago
you're reading from the journal of a European explorer from the early 1600s. In one passage, the explorer describes itting on th
Zepler [3.9K]

Answer: horse latitudes

Explanation:

8 0
3 years ago
Read 2 more answers
A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far end. The ball is then released whe
Liula [17]

Answer:

a) v₁fin = 3.7059 m/s   (→)

b) v₂fin = 1.0588 m/s     (→)

Explanation:

a) Given

m₁ = 0.5 Kg

L = 70 cm = 0.7 m

v₁in = 0 m/s   ⇒  Kin = 0 J

v₁fin = ?

h<em>in </em>= L = 0.7 m

h<em>fin </em>= 0 m   ⇒    U<em>fin</em> = 0 J

The speed of the ball before the collision can be obtained as follows

Einitial = Efinal

⇒ Kin + Uin = Kfin + Ufin

⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0

⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))

⇒ v₁fin = 3.7059 m/s   (→)

b)  Given

m₁ = 0.5 Kg

m₂ = 3.0 Kg

v₁ = 3.7059 m/s    (→)

v₂ = 0 m/s

v₂fin = ?

The speed of the block just after the collision can be obtained using the equation

v₂fin = 2*m₁*v₁ / (m₁ + m₂)

⇒  v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)

⇒  v₂fin = 1.0588 m/s     (→)

7 0
3 years ago
Other questions:
  • Which is not a benefit of power in sport?
    15·1 answer
  • What is the purpose of an experiment design?
    9·1 answer
  • A person wishes to heat pot of fresh water from 20°C to 100°C in order to boil water for pasta. They calculate that their pot ho
    10·1 answer
  • Required information Problem 16.048 - DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS NOTE: This is a multi-part question. Once
    10·1 answer
  • In outer space a five KG object moving in to the right at 4M/S and a two KG object moving to the left at 3MS collide and stick t
    13·1 answer
  • The current through a 10 ohm resistor is 1.2 amperes.What is the potential difference across the resistor?
    12·1 answer
  • How would I solve this? It's Newton's 2nd law
    7·1 answer
  • Click all that are examples of Kinetic Energy
    13·1 answer
  • An extension cord made of two wires of diameter 0.129 cmcm (no. 16 copper wire) and of length 2.7 mm (9 ftft ) is connected to a
    9·1 answer
  • As shown in (Figure 1), a layer of water covers a slab of material X in a beaker. A ray of light traveling upwards follows the p
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!