The gas planets usually have extremely high gravitational pulls, the surface isn't solid (since its a gas planet), and gas planets are larger than the inner planets.
<span>Similarities- These planets all have moons and they both revolve around the sun (obviously).
Hope this helps.</span>
Let's call the constant acceleration a.
At a time t, its speed will thus be v(t)=a*t+v0 where v0 is its initial speed, here 10 m/s. Hence v(t)=a*t+10.
From there we can deduce the position P(t)=a*t^2/2+10t+p0 where p0 is the initial position, here 0.
Hence P(t)=a*t^2/2+10t
Let's call T the time at which it's at 50 m/s, we know that P(T)=225m and that v(T)=50 m/s hence a*T+10=50 thus a=40/T and P(T)=(40/2+10)T=30T
Hence T=225/30=7.5
It took 7.5 seconds
Answer:
How fast and efficient the energy is released.
Explanation:
Before burning the marshmallow energy is stored in it in the form of chemical bond energy or chemical potential energy. So upon burning this energy is released. So there will be a difference in energy release from a burned marshmallow and the one we eat straight from package.
Answer:
7.50 cm
Explanation:
The formula
1/v + 1/u = 1/f
Is used.
where.
u is the object distance.
v is the image distance.
f is the focal length of the lens.
1/v + 1/15 = 1/5
1/v = 1/5 - 1/15
1/v = (3-1)/15
1/v = 2/15
2v = 15
V = 15/2
V = 7.5 cm
For focal length, f in lens is always taken as negative for concave and positive for convex. ... And for image distance, V in lens it is taken as positive in Convex lens since image is formed on +X side. It is taken as negative in Concave lens since image is formed in -X side of the Cartesian.