Answer:
Explanation:
capacitance of sphere 2 will be 4.5 times sphere 1
a ) when spheres are in contact they will have same potential finally . So
V_1 / V_2 = 1
b )
Charge will be distributed in the ratio of their capacity
charge on sphere1 = q x 1 / ( 1 + 4.5 )
= q / 5.5
fraction = 1 / 5.5
c ) charge on sphere 2
= q x 4.5 / 5.5
fraction = 4.5 / 5.5
d ) surface charge density of sphere 1
= q /( 5.5 x A ) where A is surface area
surface charge density of sphere 2
= q x 4.5 /( 5.5 x 4.5² A ) where A is surface area
= q /( 5.5 x 4.5 A )
q_1/q_2 = 4.5
Answer:
2. at the lowest point
Explanation:
The motion of the pendulum is a continuous conversion between kinetic energy (KE) and gravitational potential energy (GPE). This is because the mechanical energy of the pendulum, which is sum of KE and GPE, is constant:
E = KE + GPE = const.
Therefore, when KE is maximum, GPE is minimum, and viceversa.
So, the point of the motion where the KE is maximum is where the GPE is minimum: and since the GPE is directly proportional to the heigth of the bob:

we see that GPE is minimum when the bob is at the lowest point,so the correct answer is
2. at the lowest point
Answer:
The charge of an element is equal to the number of protons minus the number of electrons. The number of protons is equal to the atomic number of the element given in the periodic table. The number of electrons is equal to the atomic number minus the charge of the atom.
Explanation:
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.