Answer:
Abby is standing (4.5^2 + 2.3^2)^1/2 from the far speaker
D2 = 5.05 m from the far speaker
The difference in distances from the speakers is
5.05 - 4.5 = .55 m (Let y be wavelength, lambda)
n y = 4.5
(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength
y = .55 m subtracting equations
f = v / y = 340 / .55 = 618 / sec should be the smallest frequency
The figure is showing a volume of 2.4 mL becuase it's feel 4 little segments.
Therefore, the answer is 2.4 mL.
Answer:
C
Explanation:
First find the electrical wattage
W = I^2 * R
R = 12 ohms
I = 2 amps
Wattage = 2^2 * 12
Wattage = 4* 12
Wattage = 48 watts.
Now you need to use the power formula
Work = Power * Time
Work = ?
Power = 48 watts
Time = 3 minutes = 3 * 60 = 180 seconds.
Work = 48 * 180
Work = 8640 J
That's C
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

Answer:
20 cm
Explanation:
Given that a ball is released from a vertical height of 20 cm. It rolls down a "perfectly frictionless" ramp and up a similar ramp. What vertical height on the second ramp will the ball reach before it starts to roll back down?
Since it is perfectly frictionless, the Kinetic energy in which the ball is rolling will be equal to the potential energy at the edge of the ramp.
Therefore, the ball will reach 20 cm before it starts to roll back down.