The compression curve would be theoretically given for a system of bodies in which the spring applies the force (Although in the same way the following process can be extrapolated to any system, depending on the type of Force to consider) For a spring mass system, the strength is given by Hooke's law as
Where,
K = Spring constant
x = Displacement
If we integrate based on distance we would have
This integral represents the area under the Force Curve based on each distance segment traveled.
This is the same formula that represents the elastic potential energy of a body. Therefore the correct answer is D.
Answer:
1.8 m
Explanation:
Given: Glass falls from a table, smashes 0.6 seconds later
To find: How high a table is
Formula: Vv=gt, dv=1/2gt^2, t=2d/g
Solution: A table's <em>height</em> is measured from the top of the edge down to the floor. The tables are shown both have a height of 30 inches, which is common for many tables.
<u>Data</u>
<u>Equation</u>
- d = ²
<u>Math & Units</u>
- d = 4.905 (0.6²)
- d = 442.676
Hence the table is 1.8 m high
Answer:
When the termination is a terminal block, care must be taken to ensure a good electrical connection without damaging the conductor. Terminals should not be used for more than one
Explanation:
The Terminal block being a modular block, having insulated frame, which can secure more than two wires in it. It has a conducting strip in it. These terminal clocks helps in making the connection safer as well as organised. These terminal blocks are used for power distribution in safer way. Its potential is it can distribute power from single to multiple output. The conductor is used for making it proper contact.
Answer:
Period of the signal.
Explanation:
So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.
When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.
Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.
NB: not the amplitude but the period.