1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nitella [24]
3 years ago
14

The angle measurements in the diagram are represented by the following expressions

Mathematics
1 answer:
alexandr402 [8]3 years ago
4 0

angle A = angle B corresponding angles

8x - 8 = 5x + 25

3x = 33

x = 11

angle B

5x + 25

55 + 25

80°

You might be interested in
An interior automotive supplier places several electrical wires in a harness.Apull test measures the force required to pull spli
oksano4ka [1.4K]

Answer:

a) For this case we can use the following R code to construct the qq plot

> data<-c(28.8, 24.4, 30.1, 25.6, 26.4, 23.9, 22.1, 22.5, 27.6, 28.1, 20.8, 27.7, 24.4, 25.1, 24.6, 26.3, 28.2, 22.2, 26.3, 24.4)

# The above line is in order to store the data in a vector

> qqnorm(data, pch = 1, frame = FALSE)

# The line above is in order to calculate the quantiles from the data assumin Normal distribution

> qqline(data, col = "steelblue", lwd = 2)

# The line above is in order to put a line for the theoretical dsitribution

The result is on the figure attached.

b) For this case as we can see on the figure attached the calculated quantiles are not far from the theorical quantiles given byt the straaigth blue line so then we can conclude that the distribution seems to be normal.

Step-by-step explanation:

For this case we have the following data:

28.8, 24.4, 30.1, 25.6, 26.4, 23.9, 22.1, 22.5, 27.6, 28.1, 20.8, 27.7, 24.4, 25.1, 24.6, 26.3, 28.2, 22.2, 26.3, 24.4

The quantile-quantile or q-q plot is a graphical procedure in order to check the validity of a distributional assumption for a data set. We just need to calculate "the theoretically expected value for each data point based on the distribution in question".

If the values are asusted to the assumed distribution, we will see that "the points on the q-q plot will fall approximately on a straight line"

For this case our distribution assumed is normal.

Part a

For this case we can use the following R code to construct the qq plot

> data<-c(28.8, 24.4, 30.1, 25.6, 26.4, 23.9, 22.1, 22.5, 27.6, 28.1, 20.8, 27.7, 24.4, 25.1, 24.6, 26.3, 28.2, 22.2, 26.3, 24.4)

# The above line is in order to store the data in a vector

> qqnorm(data, pch = 1, frame = FALSE)

# The line above is in order to calculate the quantiles from the data assuming Normal distribution (0,1)

> qqline(data, col = "steelblue", lwd = 2)

# The line above is in order to put a line for the theoretical distribution

The result is on the figure attached.

Part b

For this case as we can see on the figure attached the calculated quantiles are not far from the theorical quantiles given byt the straaigth blue line so then we can conclude that the distribution seems to be normal.

4 0
3 years ago
Find the surface area of the cylinder to the nearest tenth of a square unit. use 3.14 for pi
Alborosie

Given:

  • Height of cylinder is 18.2 cm
  • Radius of cylinder is 3 cm

~

To Find?

  • Surface area

~

Solution:

Using formula:

  • Surface area of cylinder = 2πr (h + r)

~

Substituting values in the formula:

\longrightarrow \sf 2 × 3.14 × 3 (18.2 + 3)

\longrightarrow \sf 6.28 × 3 (21.2)

\longrightarrow \sf 18.84 × 21.2

\longrightarrow \sf 399.4 cm²

~

  • Hence, (B) 399.4 cm² is right answer.
6 0
2 years ago
Heres an easy question,<br><br> What is 50223 - 53253 * 51<br><br> Good luck! ;)
Ivahew [28]
2665680 is the answer
6 0
3 years ago
Read 2 more answers
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
3 years ago
⦁ Find the distance between the two numbers
liraira [26]

-12, 19=31

-2,-7=5

25,-1=26

8 0
3 years ago
Other questions:
  • jennifer is saving up to buy dress. she has saved up to $39 so far. that's three fifths of the money she needs to buy the dress.
    15·1 answer
  • Darien ordered soda for $2.75, a sandwich for $8.50, and a dessert for $3.85. Sales tax was $1.15. Use mental math to find the t
    12·1 answer
  • the selling price of a television set is $125 more than twice the cost. find the cost if the selling price is $325.
    10·2 answers
  • How much is a double batch
    15·1 answer
  • PLEASE HELP MATH MADD POINTS ☺️
    13·1 answer
  • Please help me with this problem! I don't understand!
    13·1 answer
  • If 28% of a sum is $100.80, what is the sum?
    11·1 answer
  • Which question is a statistical question?
    6·1 answer
  • The answer choices are <br><br> ∠3 ≅ ∠2<br><br><br> ℓ ∥ m<br><br><br> ∠1 ≅ ∠2<br><br><br> ∠1 ≅ ∠3
    6·1 answer
  • Someone please help:( I will really appreciate it
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!