Given :-
- The general term of a sequence is given by aₙ=43-3(n-1) .
To Find :-
- The first four terms of the sequence.
Solution :-
The given expression is 
→ aₙ=43-3(n-1)
where n > 0
<u>Finding</u><u> the</u><u> </u><u>first </u><u>term </u><u>:</u>
Substituting n = 1 , we have ,
→ T1 = 43 - 3(1-1)
→ T1 = 43 - 3*0
→ T1 = 43 - 0 = 43
<u>Finding</u><u> the</u><u> </u><u>second</u><u> </u><u>term </u><u>:</u>
Substituting n = 2 , we have,
→ T2 = 43 -3(2-1)
→ T2 = 43 -3*1
→ T2 = 43 -3 = 40
<u>Finding</u><u> </u><u>the </u><u>third </u><u>term</u><u> </u><u>:</u>
Substituting n = 3 , we have,
→ T3 = 43 -3(3-1)
→ T3 = 43 -3*2
→ T3 = 43 -6 = 37
<u>Finding</u><u> the</u><u> </u><u>fourth</u><u> </u><u>term </u><u>:</u>
→ T4 = 43 -3(4-1)
→ T4 = 43 -3*3
→ T4 = 43-9 = 34
<u>Hence</u><u> the</u><u> </u><u>first</u><u> </u><u>four</u><u> terms</u><u> of</u><u> </u><u>the</u><u> </u><u>sequence</u><u> </u><u>are </u><u>4</u><u>3</u><u> </u><u>,</u><u> </u><u>4</u><u>0</u><u> </u><u>,</u><u> </u><u>37</u><u> </u><u>and </u><u>34</u><u> </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em><em> </em><em>Let </em><em>me</em><em> know</em><em> if</em><em> you</em><em> </em><em>need </em><em>further</em><em> </em><em>clarification</em><em> </em><em>.</em>
Answer:

Step-by-step explanation:
we know that
----> by supplementary angles (form a linear pair)
Solve for x
Combine like terms

subtract 99 both sides

Divide by 3 both sides

Answer:
x > 8
x < -16
Step-by-step explanation:
2x + 10 > 26
2x + 10 - 10 > 26 - 10
2x > 16
2x/2 > 16/2
x > 8
2x + 10 < -26
2x + 10 - 10 < - 26 - 10
2x < -36
2x/2 < -36/2
x < -16
The numbers of choices in each category are multiplied together. We assume the order of paint choices matters: using color 1 in area A and color 2 in area B is not the same as using color 2 in area A and color 1 in area B.
P(7,2)*4*3*2 = 42*4*3*2 = 1008 ways
_____
P(n, k) = n!/(n-k)!
P(7, 2) = 7*6 = 42
Answer:432 whats the other option 4300
Step-by-step explanation: