The bullet travels a horizontal distance of 276.5 m
The bullet is shot forward with a horizontal velocity
. It takes a time <em>t</em> to fall a vertical distance <em>y</em> and at the same time travels a horizontal distance <em>x. </em>
The bullet's horizontal velocity remains constant since no force acts on the bullet in the horizontal direction.
The initial velocity of the bullet has no component in the vertical direction. As it falls through the vertical distance, it is accelerated due to the force of gravity.
Calculate the time taken for the bullet to fall through a vertical distance <em>y </em>using the equation,

Substitute 0 m/s for
, 9.81 m/s²for <em>g</em> and 1.5 m for <em>y</em>.

The horizontal distance traveled by the bullet is given by,

Substitute 500 m/s for
and 0.5530s for t.

The bullet travels a distance of 276.5 m.
Answer:
Only main sequence stars have a well-defined relationship between spectral type and luminosity.
Explanation:
Low-mass stars have much longer lifetimes than high-mass stars.
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
Since it was dropped, it should be the speed of gravity which is 9.8 meters/second