The gravitational potential energy
gpe = mgh

Answer:
Less than Mercury's
Explanation:
According to third Kepler's law, the square of the planet's orbital period is proportional to the cube of the average orbital radius of the planet's orbit. The constant of proportionality depends only on the mass of the star, recall that 51 Peg has the same mass as the Sun. Since the orbital period of this planet is less than Mercury's, its average orbital radius is less than Mercury's.
Answer:
1, 2, and 3.
Explanation:
Hello.
In this process, since the phase transitions that require energy are those that pass from a state with less energy or more molecular order to a state with more energy or less molecular order, say, from solid to liquid (melting), from liquid to gas (boiling) and from solid to gas (sublimation), we can conclude that the arrows representing heat energy gained are 1, 2, and 3 since 1 represents boiling, 2 melting and 3 sublimation.
Best regards.
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))