Answer:
e−(Ea/RT): the fraction of the molecules present in a gas which have energies equal to or in excess of activation energy at a particular temperature
Answer:
Glucose would not be able to get into the cell treated with this chemical
Potassium mwill not be able to move or transport may be affected
Explanation:
As all membrane transport proteins are inactivated glucose is abig molecule it cannot pass without transporter protein.
Potassium transport is through sodium potassium pump and leak channels. As all transport protein are affected so it should not be able to move but if drug does not affect them then they will be unaffected.
Answer:
HC₂H₃O₂ + NaHCO₃ —> NaC₂H₃O₂ + CO₂ + H₂O
The coefficients are: 1, 1, 1, 1, 1
Explanation:
_HC₂H₃O₂ + _NaHCO₃ —> _NaC₂H₃O₂ + _CO₂ + _H₂O
To balance an equation, we simply do a head count of the individual elements and ensure they are balanced on both side.
For the above equation, we shall balance it as :
HC₂H₃O₂ + NaHCO₃ —> NaC₂H₃O₂ + CO₂ + H₂O
Reactant:
H = 5
C = 3
O = 5
Na = 1
Product:
H = 5
C = 3
O = 5
Na = 1
From the above, we can see that each element is the same on both side of the equation. Thus the equation is already balanced
HC₂H₃O₂ + NaHCO₃ —> NaC₂H₃O₂ + CO₂ + H₂O
The coefficients are: 1, 1, 1, 1, 1
Lustrous (shiny)
Good conductors of heat and electricity.
High melting point.
High density (heavy for their size)
Malleable (can be hammered)
Ductile (can be drawn into wires)
Usually solid at room temperature (an exception is mercury)
Opaque as a thin sheet (can't see through metals)
Answer:
Explanation:
m / z = 20 , 21 , 22
m / 1 = 20 , 21 , 22
m = 20 , 21 , 22 .
ratio of isotopes = 112 : 0.21 : 11.1
Average atomic mass = (112 x 20 + .21 x 21 + 11.1 x 22) / (112 + .21 + 11.1 )
= (2240 + 4.41 + 244.2) / 123.31
= 2488.61 / 123.31
= 20.18