Each
ion contains three extra protons. Hence, the extra charge on each
=
C
Total charge = 0.035 pC
Total charge (Q) =
C
Let the number of
ions be n.
According to question:



n = 72917
Hence, the total number of ions needed to be transferred is 72917
Answer:
160 W
Explanation:
Power is the ratio of work to time:
(1600 J)/(10 s) = 160 J/s = 160 W
Answer:
5 ms-2
Explanation:
F = ma
F = 100N
m = 20kg ( you should make sure the unit is kg before you answer the question)
100 = 20a
a = 100÷ 20
a = 5 ms-2
Answer:
Option C
Explanation:
According to the question:
Force exerted by the team towards south, F = 10 N
Force exerted by the opposite team towards North, F' = 17 N
Net Force, 

Thus the force will be along the direction of force whose magnitude is higher
Therefore,
towards North
Answer:
t = 444.125 sec
Explanation:
Given data:
V = 24 volt
I = 0.1 ampere
mass of water mw = 51 gm
cr = 4.18 J/gm degree K^-1
mass of resistor = 8 gm
cr = 3.7 J/gm degree K^-1
we know that power is given as
Power P = VI
But P =E/t
so equating both side we have

solving for t


t = 444.125 sec