Answer:
A ). 12
Step-by-step explanation:
Answer:
Step-by-step explanation:
![5\frac{1}{4} =x](https://tex.z-dn.net/?f=5%5Cfrac%7B1%7D%7B4%7D%20%3Dx)
![3\frac{3}{4} =y](https://tex.z-dn.net/?f=3%5Cfrac%7B3%7D%7B4%7D%20%3Dy)
x-y=?
so
?+y=x
which means
![?+ 3\frac{3}{4} = 5\frac{1}{4}](https://tex.z-dn.net/?f=%3F%2B%203%5Cfrac%7B3%7D%7B4%7D%20%3D%205%5Cfrac%7B1%7D%7B4%7D)
i hope this helps
Answer:
![\displaystyle 5](https://tex.z-dn.net/?f=%5Cdisplaystyle%205)
Step-by-step explanation:
![\displaystyle ±7 = \sqrt{49} \\ \\ -7 = x + 2\:\:AND\:\:7 = x + 2 \\ \\ -9, 5 = x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%C2%B17%20%3D%20%5Csqrt%7B49%7D%20%5C%5C%20%5C%5C%20-7%20%3D%20x%20%2B%202%5C%3A%5C%3AAND%5C%3A%5C%3A7%20%3D%20x%20%2B%202%20%5C%5C%20%5C%5C%20-9%2C%205%20%3D%20x)
Sinse you want the POSITIVE solution, your answer is 5.
I am joyous to assist you at any time.
Answer:
![-\frac{5}{4x}](https://tex.z-dn.net/?f=-%5Cfrac%7B5%7D%7B4x%7D)
Step-by-step explanation:
<h2>
![\left(-5x^3\right)^3\div \left(10x^5\right)^2](https://tex.z-dn.net/?f=%5Cleft%28-5x%5E3%5Cright%29%5E3%5Cdiv%20%5Cleft%2810x%5E5%5Cright%29%5E2)
</h2><h2>
![\frac{-5^3x^9}{\left(10x^5\right)^2}](https://tex.z-dn.net/?f=%5Cfrac%7B-5%5E3x%5E9%7D%7B%5Cleft%2810x%5E5%5Cright%29%5E2%7D)
</h2><h2>
![\frac{-5^3x^9}{10^2x^{10}}](https://tex.z-dn.net/?f=%5Cfrac%7B-5%5E3x%5E9%7D%7B10%5E2x%5E%7B10%7D%7D)
</h2><h2>
![\frac{-5^3x^9}{5^2\cdot \:2^2x^{10}}](https://tex.z-dn.net/?f=%5Cfrac%7B-5%5E3x%5E9%7D%7B5%5E2%5Ccdot%20%5C%3A2%5E2x%5E%7B10%7D%7D)
</h2><h2>
![\frac{-5x^9}{2^2x^{10}}](https://tex.z-dn.net/?f=%5Cfrac%7B-5x%5E9%7D%7B2%5E2x%5E%7B10%7D%7D)
</h2><h2>
![\frac{-5}{2^2x}](https://tex.z-dn.net/?f=%5Cfrac%7B-5%7D%7B2%5E2x%7D)
</h2>
![-\frac{5}{4x}](https://tex.z-dn.net/?f=-%5Cfrac%7B5%7D%7B4x%7D)
- hope it helps! -
<h2 />
Answer:
see below
Step-by-step explanation:
When we add fractions with the same denominator (bottom), we do not add the denominator, we keep it the same. We only add the numerator (top)
1/2 + 1/2 = 2/2 =1
You will have given the entire sandwich away.