1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
5

I. The time till failure of an electronic component has an Exponential distribution and it is known that 10% of components have

failed by 1000 hours. (a) Find the mean and standard deviation of the time till failure. (b) What is the probability that a component is still working after 5000 hours? (c) What is the probability that three components fail in one hour? (d) What is the probability that at least two components fail in one half hour?
Engineering
1 answer:
drek231 [11]3 years ago
4 0

Answer:

(a) The mean time to fail is 9491.22 hours

The standard deviation time to fail is 9491.22 hours

(b) 0.5905

(c) 3.915 × 10⁻¹²

(d) 2.63 × 10⁻⁵

Explanation:

(a) We put time to fail = t

∴ For an exponential distribution, we have f(t) = \lambda e^{-\lambda t}

Where we have a failure rate = 10% for 1000 hours, we have(based on online resource);

P(t \leq 1000) = \int\limits^{1000}_0 {\lambda e^{-\lambda t}} \, dt = \dfrac{e^{1000\lambda}-1}{e^{1000\lambda}} = 0.1

e^(1000·λ) - 0.1·e^(1000·λ) = 1

0.9·e^(1000·λ) = 1

1000·λ = ㏑(1/0.9)

λ = 1.054 × 10⁻⁴

Hence the mean time to fail, E = 1/λ = 1/(1.054 × 10⁻⁴) = 9491.22 hours

The standard deviation = √(1/λ)² = √(1/(1.054 × 10⁻⁴)²)) = 9491.22 hours

b) Here we have to integrate from 5000 to ∞ as follows;

p(t>5000) = \int\limits^{\infty}_{5000} {\lambda e^{-\lambda t}} \, dt =\left [  -e^{\lambda t}\right ]_{5000}^{\infty} = e^{5000 \lambda} = 0.5905

(c) The Poisson distribution is presented as follows;

P(x = 3) = \dfrac{\lambda ^x e^{-x}}{x!}  = \frac{(1.0532 \times 10^{-4})^3 e^{-3} }{3!}  = 3.915\times 10^{-12}

p(x = 3) = 3.915 × 10⁻¹²

d) Where at least 2 components fail in one half hour, then 1 component is expected to fail in 15 minutes or 1/4 hours

The Cumulative Distribution Function is given as follows;

p( t ≤ 1/4) CDF = 1 - e^{-\lambda \times t} = 1 - e^{-1.054 \times 10 ^{-4} \times 1/4} = 2.63 \times 10 ^{-5}.

You might be interested in
Can someone answer plz!! It’s 24 points
fgiga [73]

Explanation:

750 microvolt is your answer

please mark as brilliant

3 0
3 years ago
Read 2 more answers
You are hitting a nail with a hammer (mass of hammer =1.8lb) the initial velocity of the hammer is 50 mph (73.33 ft/sec). The ti
Archy [21]

Answer:

The nail exerts a force of 573.88 Pounds on the Hammer in positive j direction.

Explanation:

Since we know that the force is the rate at which the momentum of an object changes.

Mathematically \overrightarrow{F}=\frac{\Delta \overrightarrow{p}}{\Delta t}

The momentum of any body is defines as \overrightarrow{p}=mass\times \overrightarrow{v}

In the above problem we see that the moumentum of the hammer is reduced to zero in 0.023 seconds thus the force on the hammer is calculated using the above relations as

\overrightarrow{F}=\frac{m(\overrightarrow{v_{f}}-\overrightarrow{v_{i}})}{\Delta t}

\overrightarrow{F}=\frac{m(0-(-73.33)}{0.23}=\frac{1.8\times 73.33}{0.23}=573.88Pounds

6 0
3 years ago
1.8 A water flow of 4.5 slug/s at 60 F enters the condenser of steam turbine and leaves at 140 F. Determine the heat transfer ra
Ann [662]

Answer:

Hr=4.2*10^7\ btu/hr

Explanation:

From the question we are told that:

Water flow Rate R=4.5slug/s=144.78ib/sec

Initial Temperature T_1=60 \textdegree F

Final Temperature  T_2=140 \textdegree F

Let

Specific heat of water \gamma= 1

And

 \triangle T= 140-60

 \triangle T= 80\ Deg.F

Generally the equation for Heat transfer rate of water  H_r is mathematically given by

Heat transfer rate to water= mass flow rate* specific heat* change in temperature

 H_r=R* \gamma*\triangle T

 H_r=144.78*80*1

 H_r=11582.4\ btu/sec

Therefore

 H_r=11582.4\ btu/sec*3600

 Hr=4.2*10^7\  btu/hr

3 0
3 years ago
A frying pan is connected to a 150-volt circuit. If the resistance of the frying pan is 25 ohms, how many amperes does the fryin
mario62 [17]

Answer:

Explanation:

Ohms Law I=E/R (resistive requires no power factor correction)

150/25= 6 amps

5 0
3 years ago
The ________ is the part of the drill press that holds and rotates the cutting tool.
lana66690 [7]

Answer:

Spindle

Explanation:

Please mark me brainliest

8 0
3 years ago
Read 2 more answers
Other questions:
  • 100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is 12.322 m3. The piston is now moved until t
    13·1 answer
  • What are factor of safety for brittle and ductile material
    5·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • 4.10.1: Simon says. "Simon Says" is a memory game where "Simon" outputs a sequence of 10 characters (R, G, B, Y) and the user mu
    10·1 answer
  • Consider a sphere made of stainless steel with diameter of 25 cm. It is heated to temperature of 300°C for some chemical tests.
    12·1 answer
  • If you get a flat in the front of your car, your car will:
    11·1 answer
  • 4.7 If the maximum tensile force in any of the truss members must be limited to 22 kN, and the maximum compressive force must be
    9·1 answer
  • What happens if you leave your car on while pumping gas
    8·1 answer
  • ) In a disk test performed on a specimen 32-mm in diameter and 7 mm thick, the specimen fractures at a stress of 680 MPa. What w
    15·1 answer
  • A pipe fitter would fabricate which one of the following systems?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!