You formatted the equation wrong for the setting your calculus on i would recommend using a Ti-34
Answer:
Probability that the sample mean comprehensive strength exceeds 4985 psi is 0.99999.
Step-by-step explanation:
We are given that a random sample of n = 9 structural elements is tested for comprehensive strength. We know the true mean comprehensive strength μ = 5500 psi and the standard deviation is σ = 100 psi.
<u><em>Let </em></u>
<u><em> = sample mean comprehensive strength</em></u>
The z-score probability distribution for sample mean is given by;
Z =
~ N(0,1)
where,
= population mean comprehensive strength = 5500 psi
= standard deviation = 100 psi
The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.
Now, Probability that the sample mean comprehensive strength exceeds 4985 psi is given by = P(
> 4985 psi)
P(
> 4985 psi) = P(
>
) = P(Z > -15.45) = P(Z < 15.45)
= <u>0.99999</u>
<em>Since in the z table the highest critical value of x for which a probability area is given is x = 4.40 which is 0.99999, so we assume that our required probability will be equal to 0.99999.</em>
Answer:
c^2=a^2+b^2
c^2=6^2+8^2
c^2=36+64
c=10
but still do not understand why peoples are asking that basic
Answer:
That would be sina.
Step-by-step explanation:
sin(a+b) = sinacosb + cosasinb
sin(a-b) = sinacosb - cosasinb
Adding we get sin(a+b) + sin(a-b) = 2sinaccosb
so sinacosb = 1/2sin(a+b) + sin(a-b)
For the function y = 7x - 1, if you state that the domain(or all the numbers you can substitute in for "x") of that function is the set of all real numbers, then you can assume that there will be an infinite number of solutions for the function.
In other words, if you substitute any real number in for "x" you will find that you will get a corresponding value for "y". In fact, these "pairs" of corresponding values of x and y are called ordered pairs and represent the various solutions of the equation.
Your response should be choice D: