What’s the full question? you only put part of it on here
The ladder and the outside wall form a right triangle
The length of the ladder is 97.8 feet
<h3>How to determine the
length of the
ladder?</h3>
The given parameters are:
Distance (B) = 22 feet
Angle of elevation (θ) = 77 degrees
The length (L) of the ladder is calculated using the following cosine ratio
cos(θ) = B/L
So, we have:
cos(77) = 22/L
Make L the subject
L = 22/cos(77)
Evaluate the product
L = 97.8
Hence, the length of the ladder is 97.8 feet
Read more about right triangles at:
brainly.com/question/2437195
Answer:
To solve for the volume of a sphere, you must first know the equation for the volume of a sphere.
V=43(π)(r3)
In this equation, r is equal to the radius. We can plug the given radius from the question into the equation for r.
V=43(π)(123)
Now we simply solve for V.
V=43(π)(1728)
V=(π)(2304)=2304π
Answer is 2304
5k/2G is the answer to the problem.
Answer:
15
Step-by-step explanation:
If CD and DE equal, then x+6 = 4x -21
So if you subtract x from both sides and plus 21 to both sides, that would be 3x = 27. Divide by 3 on both sides and you get 9.
Plug in x+6 with 9 and you get 15.