Answer:
The correct option is;
A. Circular
Explanation:
Some of the light that impinges on the surface are reflected and the rest are transmitted to a different medium
At the surface of the next medium also, some of the light are transmitted while the others are reflected and refracted through the first medium
The speed of light (and hence the wavelength and color) refracted through the thin film is changed as the distance the refracted light travels through the thin film is increased as we move away from the point directly in the front view to some distance as the reflected light path from those distance to the eye is increased due to their inclination giving them a different wavelength which are all equal at a radial distance from the eye hence forming a circular fringes.
Explanation:
It is given that,
Frequency of diagnostic ultrasound, f = 3.82 MHz = 3820 Hz
The speed of the sound in air, v = 343 m/s
(a) We need to find the wavelength in air of such a sound wave. Let it is given by λ₁
i.e. 


(b) If the speed of sound in tissue is 1650 m/s .



Hence, this is the required solution.
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2