Answer:
The answer depends on what object you are dropping. Are you dropping a balloon or a car? (I'm joking 'bout that one.) If the mass of the object is very little, then it might drop slower. If the mass is bigger, then it might drop faster.
Good luck!
Explanation:
Answer:
100.390407
Explanation:
To find acceleration, you would use the formula a=f/m (acceleration equals force divided by mass) and then once you enter those numbers in the formula, a=180/1.793. Then you divide 180 divided by 1.793 which gets you an answer of 100.390407.
FVJDJFN.s<ldF KN,M c":F,BJ TNHIJRT IHJYODIFG
Answer:
a) 567J
b) 283.5J
c)850.5J
Explanation:
The expression for the translational kinetic energy is,

Substitute,
14kg for m
9m/s for v

The translational kinetic energy of the center of mass is 567J
(B)
The expression for the rotational kinetic energy is,

The expression for the moment of inertia of the cylinder is,

The expression for angular velocity is,

substitute
1/2mr² for I
and vr for w
in equation for rotational kinetic energy as follows:



The rotational kinetic energy of the center of mass is 283.5J
(c)
The expression for the total energy is,

substitute 567J for E(r) and 283.5J for E(R)

The total energy of the cylinder is 850.5J
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>