When a force causes a body to move, work is done on the object by the force. Work is the measure of the energy transfer when a force 'F' moves an object through a distance 'd'. So we say that energy is transferred from one energy store to another when work is done, and therefore, energy transferred = work done.
Displacement (between time 0 and time 25) is the area under the velocity time curve, i.e. ∫ vdt.
Here, v(0)=10, v(25)=34 (approx.)
Therefore
displacement = (1/2)(10+34 m/s)*(25-0) s [ trapezoid area ]
=550 m
Answer:
the greater the speed, the greater the electromotive force
* The metal pole must be parallel to the field
* you must keep the ball of the field
Explanation:
To determine the advice to the runners, let's use the Farad equation to and
fem = -N
= -N
how the runners are moving
fi = B l x
fem = -N B l v
therefore the advice we can give are:
* the greater the speed, the greater the electromotive force
* The metal pole must be parallel to the field
* you must keep the ball of the field
Answer:
The magnetic field at the center of a circular loop is
.
Explanation:
Given that,
Radius = 4.0 cm
Current = 2.0 A
We need to calculate the magnetic field at the center of a circular loop
Using formula of magnetic field

Where, I = current
r = radius
Put the value into the formula



Hence, The magnetic field at the center of a circular loop is
.