Answer: Choice D)
The angle between the two vectors is approximately 71.6 degrees
----------------------------------------------
----------------------------------------------
Work Shown:
Each time I write the word "dot" I mean "dot product".
|u| = length of vector u
|u| = sqrt(u dot u)
|u| = sqrt(<8,4> dot <8,4>)
|u| = sqrt(8*8 + 4*4)
|u| = sqrt(64 + 16)
|u| = sqrt(80)
|u| = sqrt(16*5)
|u| = sqrt(16)*sqrt(5)
|u| = 4*sqrt(5)
-----------------------
|v| = length of vector v
|v| = sqrt(v dot v)
|v| = sqrt(<9,-9> dot <9,-9>)
|v| = sqrt(9*9 + (-9)*(-9))
|v| = sqrt(81+81)
|v| = sqrt(2*81)
|v| = sqrt(2)*sqrt(81)
|v| = sqrt(2)*9
|v| = 9*sqrt(2)
-----------------------
u dot v = <8,4> dot <9,-9>
u dot v = 8*9 + 4*(-9)
u dot v = 72-36
u dot v = 36
-----------------------
cos(theta) = (u dot v)/(|u|*|v|)
cos(theta) = (36)/(4*sqrt(5)*9*sqrt(2))
cos(theta) = (36)/(36*sqrt(10))
cos(theta) = 1/(sqrt(10))
cos(theta) = sqrt(10)/10
theta = arccos(sqrt(10)/10)
theta = 71.56505
which rounds to 71.6 when rounding to one decimal place (nearest tenth)
That's why the approximate answer is roughly 71.6 degrees
Answer:
angle y = 63
x= 49 ( v.o.a)
Step-by-step explanation:
1. plug in the numbers for the variables, like this: 9(-5)+18(-1)
2. solve
Hopefully this helps! Let me know if you need more explanation.
Answer:
½*b*h
Step-by-step explanation:
½*base*height
<h2>you can use the above formula to answer the following questions.</h2>
I will do Point A carefully, The others I will indicate. Start with the Given Point A. Then do the translations
A(-1,2) Original Point
Reflection: about x axis:x stays the same; y becomes -y:Result(-1,-2)
T<-3,4>: x goes three left, y goes 4 up (-1 - 3, -2 + 4): Result(-4,2)
R90 CCW: Point (x,y) becomes (-y , x ) So (-4,2) becomes(-2, - 4): Result (-2, - 4)
B(4,2) Original Point
- Reflection: (4, - 2)
- T< (-3,4): (4-3,-2 + 4): (1 , 2)
- R90 CCW: (-y,x) = (-2 , 1)
C(4, -5) Original Point
- Reflection (4,5)
- T<-3,4): (4 - 3, 5 + 4): (1,9)
- R90, CCW (-9 , 1)
D(-1 , -5) Original Point
- Reflection (-1,5)
- T(<-3,4): (-1 - 3, 5 + 4): (-4,9)
- R90, CCW ( - 9, - 4)
Note: CCW means Counter Clockwise
The graph on the left is the same one you have been given.
The graph on the right is the same figure after all the transformations