1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
2 years ago
11

PLEASE HELP use the image to answer the question. what is the name of the aluminum ion?

Physics
2 answers:
solong [7]2 years ago
8 0

<em>Answer:</em>

<em>Aluminum 3+</em>

<em>Sorry if im not correct</em>.

labwork [276]2 years ago
7 0

Answer:

Aluminium(3+)

Explanation:

im big brains

You might be interested in
Which value is represented by the slope of the line?
netineya [11]

The slope of the line is

(change in ' y ' between the ends)  /  (change in ' x ' between the ends)

Slope = (630g - 0) / (70 cm^3 - 0)

Slope = (630 / 70) g/cm^3

<em>Slope =  9.0 g/cm^3</em>

5 0
3 years ago
Determine the density of a rectangular piece of concrete that measures 3.7 cm by 2.1 cm by 5.8 cm and has a mass of 43.8 grams.
Novay_Z [31]
It is customary to work in SI units.

Calculate the volume of the concrete.
V = 3.7*2.1*5.8 cm³ = 45.066 cm³ = 45.066 x 10 ⁻⁶ m³

The mass is  43.8 g = 43.8 x 10⁻³ kg

The density is mass/volume.
Density = (43.8 x 10⁻³ kg)/(45.066 x 10⁻⁶ m³) = 971.9 kg/m³

Answer: 971.9 kg/m³
5 0
3 years ago
A motorcycle running on gasoline wastes a large amount of energy mainly as A) heat energy and sound energy. B) light energy and
vlada-n [284]

A motorcycle mainly wastes energy as heat <u>energy</u> and <u>sound</u> energy. In the engine, chemical energy is transformed into mechanical energy. However, the engine is inefficient and much of the chemical energy is lost as heat energy. Also, some of the energy is transformed to sound energy. This explains why the motorcycle is noisy and has an exhaust pipe.

3 0
3 years ago
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3. 0 m is initially at rest. A 20 kg boy approaches the
Margaret [11]

Hi there!

\boxed{\omega = 0.38 rad/sec}

We can use the conservation of angular momentum to solve.

\large\boxed{L_i = L_f}

Recall the equation for angular momentum:

L = I\omega

We can begin by writing out the scenario as a conservation of angular momentum:

I_m\omega_m + I_b\omega_b = \omega_f(I_m + I_b)

I_m = moment of inertia of the merry-go-round (kgm²)

\omega_m = angular velocity of merry go round (rad/sec)

\omega_f = final angular velocity of COMBINED objects (rad/sec)

I_b = moment of inertia of boy (kgm²)

\omega_b= angular velocity of the boy (rad/sec)

The only value not explicitly given is the moment of inertia of the boy.

Since he stands along the edge of the merry go round:

I = MR^2

We are given that he jumps on the merry-go-round at a speed of 5 m/s. Use the following relation:

\omega = \frac{v}{r}

L_b = MR^2(\frac{v}{R}) = MRv

Plug in the given values:

L_b = (20)(3)(5) = 300 kgm^2/s

Now, we must solve for the boy's moment of inertia:

I = MR^2\\I = 20(3^2) = 180 kgm^2

Use the above equation for conservation of momentum:

600(0) + 300 = \omega_f(180 + 600)\\\\300 = 780\omega_f\\\\\omega = \boxed{0.38 rad/sec}

8 0
2 years ago
A launched hopper reach to 1.20 m maximum height. How much is it’s launch velocity?
garri49 [273]

The launch velocity is 4.8 m/s

Explanation:

We can solve this problem by applying the law of conservation of energy. In fact, the mechanical energy of the hopper (equal to the sum of the potential energy + the kinetic energy) is conserved. So we can write:

U_i +K_i = U_f + K_f

where:

U_i is the initial potential energy, at the bottom

K_i is the initial kinetic energy, at the bottom

U_f is the final potential energy, at the top

K_f is the final kinetic energy, at the top

We can rewrite the equation as:

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m is the mass of the hopper

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0 is the initial height

u is the launch speed of the hopper

h_f = 1.20 m is the maximum altitude reached by the hopper

v = 0 is the final speed (which is zero when the hopper reaches the maximum height)

Solving the equation for u, we find the launch speed of the hopper:

u=\sqrt{2gh_g}=\sqrt{2(9.8)(1.20)}=4.8 m/s

Learn more about kinetic energy and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647  

brainly.com/question/10770261  

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • List the ocean floor features that are formed by the movement of tectonic plates
    12·1 answer
  • Radiation is an example of a transverse wave t or f
    15·1 answer
  • Is cotton a gas, liquid or solid
    6·1 answer
  • Finish the sentence below with the word that makes the sentence true.
    12·1 answer
  • the wheel of a car has a radius of .350 m. the engine of the car applies applies a torque of 295 N m to this wheel, which does n
    12·1 answer
  • Imagine a volcano erupting many times over a period of years. With following landforms is most likely to result of volcanic erup
    9·1 answer
  • How much kinetic energy is required to break through?
    6·1 answer
  • Mr Jones launches an arrow horizontally at a rate of 40m/s off of a 78.4 m cliff towards the south, what direction and value is
    14·1 answer
  • Which would heat up faster cotton or plastic
    7·1 answer
  • The end point of a spring oscillates with a period of 2.0 s when a block with mass m is attached to it. When this mass is increa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!