In order to make things easier to describe and explain, let's call
the resistance of each bulb 'R', and the battery voltage 'V'.
a). In series, the total resistance is 3R.
In parallel, the total resistance is R/3.
Changing from series to parallel, the total resistance of the circuit
decreases to 1/9 of its original value.
b). In series, the total current is V / (3R) .
In parallel, the total current is 3V / R .
Changing from series to parallel, the total current in the circuit
increases to 9 times its original value.
c). In series, the power dissipated by the circuit is
(V) · V/3R = V² / 3R .
In parallel, the power dissipated by the circuit is
(V) · 3V/R = 3V² / R .
Changing from series to parallel, the power dissipated by
the circuit (also the power delivered by the battery) increases
to 9 times its original value.
b is the answer i hope this helped...
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance:
Answer:
s = 30330.7 m = 30.33 km
Explanation:
First we need to calculate the speed of sound at the given temperature. For this purpose we use the following formula:
v = v₀√[T/273 k]
where,
v = speed of sound at given temperature = ?
v₀ = speed of sound at 0°C = 331 m/s
T = Given Temperature = 10°C + 273 = 283 k
Therefore,
v = (331 m/s)√[283 k/273 k]
v = 337 m/s
Now, we use the following formula to calculate the distance traveled by sound:
s = vt
where,
s = distance traveled = ?
t = time taken = 90 s
Therefore,
s = (337 m/s)(90 s)
<u>s = 30330.7 m = 30.33 km</u>
The cycle of cellular respiration and photosynthesis are important for the life of plants because cellular respiration uses one of the products of photosynthesis (oxygen), and uses it as one of the reactants along with glucose to produce carbon dioxide. These two cycles help maintain a balance for our atmosphere, even though pollution and other factors have disrupted this balance. Hope this helps! :)