It totally depends on what kind of wave you're talking about.
-- a sound wave from a trumpet or clarinet playing a concert-A pitch is about 78 centimeters long ... about 2 and 1/2 feet. This is bigger than atoms.
-- a radio wave from an AM station broadcasting on 550 KHz, at the bottom of your radio dial, is about 166 feet long ... maybe comparable to the height of a 10-to-15-story building. This is bigger than atoms.
-- a radio wave heating the leftover meatloaf inside your "microwave" oven is about 4.8 inches long ... maybe comparable to the length of your middle finger. this is bigger than atoms.
-- a deep rich cherry red light wave ... the longest one your eye can see ... is around 750 nanometers long. About 34,000 of them all lined up will cover an inch. These are pretty small, but still bigger than atoms.
-- the shortest wave that would be called an "X-ray" is 0.01 nanometer long. You'd have to line up 2.5 billion of <u>those</u> babies to cover an inch. Hold on to these for a second ... there's one more kind of wave to mention.
-- This brings us to "gamma rays" ... our name for the shortest of all electromagnetic waves. To be a gamma ray, it has to be shorter than 0.01 nanometer.
Talking very very very very roughly, atoms range in size from about 0.025 nanometers to about 0.26 nanometers.
The short end of the X-rays, and on down through the gamma rays, are in this neighborhood.
Newton's second law allows calculating the response for the person's acceleration while leaving the trampoline is:
-4.8 m / s²
Newton's second law says that the net force is proportional to the product of the mass and the acceleration of the body
F = m a
Where the bold letters indicate vectors, F is the force, m the masses and the acceleration
The free body diagram is a diagram of the forces without the details of the body, in the attached we can see the free body diagram for this system
-W = m a
Whera
is the trampoline force
Body weight is
W = mg
We substitute
- mg = ma
a =
Let's calculate
a = 
a = -4.8 m / s²
The negative sign indicates that the acceleration is directed downward.
In conclusion using Newton's second law we can calculate the acceleration of the person while leaving the trampoline is
-4.8 m / s²
Learn more here: brainly.com/question/19860811
Answer: The tension in the string is zero
Explanation:
Answer:
Explanation:
According to newtons second law of motion;
F = ma .... 1
Also the force acting aong the inclines is expressed as;
F = mgsintheta
m is the mass of the object
a is the acceleration
theta is angle of inclination
Equate 1 and 2
ma = mg sin theta
a = gsin(theta)
a = 9.8sin30
a = 9.8(0.5)
a = 4.9m/s²
Hence the acceleration of the ping pong is 4.9m/s²
Answer:
74.52s
Explanation:
The solution is shown in the picture below