Answer:
Explanation:
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. Or Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
An exponential decay law has the general form: A = Ao * e ^ (-kt) =>
A/Ao = e^(-kt)
Half-life time => A/Ao = 1/2, and t = 4.5 min
=> 1/2 = e^(-k*4.5) => ln(2) = 4.5k => k = ln(2) / 4.5 ≈ 0.154
Now replace the value of k, Ao = 28g and t = 7 min to find how many grams of Thalium-207 will remain:
A = Ao e ^ (-kt) = 28 g * e ^( -0.154 * 7) = 9.5 g
Answer 9.5 g.
Sodium reacts to chlorine and gives NaCl. The balanced reaction is given below:
2Na + Cl₂→ 2NaCl. Two moles Na reacts with one mole Cl₂ and produces two moles of NaCl. Atomic mass of Na= 23, Molar mass of Cl₂= 71, molar mass of NaCl=58.5.
So, 46 g Na reacts with 71 g of Cl₂ and produces (2 X 58.5)g = 117 g of NaCl. As per question Na reacts completely which means Na is the limiting reagent. So, number of moles of Na reacts = number moles of NaCl produced.
NaCl produced= 819 g= (819/58.5) moles= 15.69 moles. Therefore, 15.69 moles = 15.69 X 23 g=360.87 g of Na reacted.
Answer:
30.0 mol CO₂
Explanation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
To answer this problem we need to convert moles of C₃H₈ into moles of CO₂: We'll do that by using the <u>stoichiometric coefficients</u>, using a conversion factor that has C₃H₈ moles in the denominator and CO₂ moles in the numerator:
10.0 mol C₃H₈ *
= 30.0 mol CO₂