Answer:
a) The number of students in your school.
Step-by-step explanation:
Quantitative and Qualitative:
- The data that can be expressed with the help of numerical are know as quantitative variable.
- Qualitative variable is the non parametric variable and numerical does not describe the data
Discrete and Continuous data:
- Discrete data are expressed in whole number and cannot take all the values within an interval.
- Continuous variable can be expressed in decimals and can take any value within an interval.
a) The number of students in your school.
Since whole numbers are used to express number of children it is a discrete and continuous data.
b) The different colors of the eyes of your classmates.
These are qualitative data and numerical are not used to express them.
c) The height of all the people in your neighborhood.
These are continuous data as height is measured and can be expressed in decimals.
d) The acceleration of your car as you drive to school.
These are continuous data as acceleration is measured and can be expressed in decimals.
Answer:
The answer is 3,906.25
Step-by-step explanation:
All you have to do is divide 15,625 by 4! :)
Answer:
200 bars
Step-by-step explanation:
$300 - $50 = the amount of money you still need, $250
250 dollars/$1.25 per bar = 200 bars you need to sell to get 300 dollars
Answer:
Sorry i dont know but need the points
Step-by-step explanation:
Let us formulate the independent equation that represents the problem. We let x be the cost for adult tickets and y be the cost for children tickets. All of the sales should equal to $20. Since each adult costs $4 and each child costs $2, the equation should be
4x + 2y = 20
There are two unknown but only one independent equation. We cannot solve an exact solution for this. One way to solve this is to state all the possibilities. Let's start by assigning values of x. The least value of x possible is 0. This is when no adults but only children bought the tickets.
When x=0,
4(0) + 2y = 20
y = 10
When x=1,
4(1) + 2y = 20
y = 8
When x=2,
4(2) + 2y = 20
y = 6
When x=3,
4(3) + 2y= 20
y = 4
When x = 4,
4(4) + 2y = 20
y = 2
When x = 5,
4(5) + 2y = 20
y = 0
When x = 6,
4(6) + 2y = 20
y = -2
A negative value for y is impossible. Therefore, the list of possible combination ends at x =5. To summarize, the combinations of adults and children tickets sold is tabulated below:
Number of adult tickets Number of children tickets
0 10
1 8
2 6
3 4
4 2
5 0