Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.

From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
=
mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
= 
=
mol
Mass of ethanol
= ![\frac{20}{9} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
=
mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed=
mol
Mass of ethanol formed
= ![\frac{977}{440} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B977%7D%7B440%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
Looks correct but the second to last I would of put abiotic and biotic factors but I don’t know what’s right for you
In a solid, molecules are packed together, and it keeps its shape. Liquids take the shape of the container. Gases spread out to fill the container. Solid is one of the three main states of matter, along with liquid and gas.
Hope that helps!
We need to increase the concentration of common ion first, in order to promote the common ion effect
<h3>What is the Common ion effect?</h3>
It is an effect that suppresses the dissociation of salt due to the addition of another salt having common ions.
For example, a saturated solution of silver chloride in equilibrium has Ag⁺ and Cl⁻ . Sodium Chloride is added to the solution and has a common ion Cl⁻. As a result, the equilibrium shifts to the left to form more silver chloride. Thus, solubility of AgCl decreases.
The Equilibrium law states that if a process is in equilibrium and is subjected to a change
- in temperature,
- pressure,
- the concentration of reactant or product,
then the equilibrium shifts in a particular direction, according to the condition.
Thus, an increase in the concentration of common ion promotes the common ion effect.
Learn more about common ion effect:
brainly.com/question/23684003
#SPJ4