The answer is b) 12 i believe
Answer:
810 pm
Explanation:
Step 1: Given and required data
- Velocity of the atom (v): 490 m/s
- Mass of a hydrogen atom (m): 1.67 × 10⁻²⁷ kg
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Step 2: Calculate the de Broglie wavelength of the hydrogen atom
We will use de Broglie's equation.
λ = h / m × v
λ = 6.63 × 10⁻³⁴ J.s / 1.67 × 10⁻²⁷ kg × 490 m/s = 8.10 × 10⁻¹⁰ m
Step 3: Convert 8.10 × 10⁻¹⁰ m to picometers
We will use the conversion factor 1 m = 10¹² pm.
8.10 × 10⁻¹⁰ m × 10¹² pm/1 m = 810 pm
Answer:
Animals
Explanation:
Eukaryotic organisms are multi-celled. Animals and plants are a major example of that
Answer:
Option B
Explanation:
As Brønsted-Lowry theory states, acids are the ones that can donate protons.
When a proton is donated, it is released to become medium more acidic.
HCl is a strong acid.
HCl (l) + H₂O (l) → H₃O⁺ (aq) + Cl⁻(aq)
These always reffers to strong acid where the dissociation is 100% completed.
In a weak acid, dissociation is not 100% complete, that's why we have an equilibrium.
HA (l) + H₂O (l) ⇄ H₃O⁺ (aq) + A⁻(aq) Ka
Explanation:
According to the given data, we will calculate the following.
Half life of lipase
= 8 min x 60 s/min
= 480 s
Rate constant for first order reaction is as follows.
=
Initial fat concentration
= 45
= 45 mmol/L
Rate of hydrolysis
= 0.07 mmol/L/s
Conversion X = 0.80
Final concentration (S) =
= 45 (1 - 0.80)
= 9
or, = 9 mmol/L
It is given that
= 5mmol/L
Therefore, time taken will be calculated as follows.
t = ![-\frac{1}{K_{d}}ln[1 - \frac{K_{d}}{V}{K_{M} ln (\frac{S_{o}}{S}) + (S_{o} - S)]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7BK_%7Bd%7D%7Dln%5B1%20-%20%5Cfrac%7BK_%7Bd%7D%7D%7BV%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7BS_%7Bo%7D%7D%7BS%7D%29%20%2B%20%28S_%7Bo%7D%20-%20S%29%5D)
Now, putting the given values into the above formula as follows.
t =
= ![-\frac{1}{1.44 \times 10^{-3}s^{-1}}ln[1 - \frac{1.44 \times 10^{-3}s^{-1}}{0.07 mmol/L/s }{K_{M} ln (\frac{45 mmol/L }{9 mmol/L }) + (45 mmol/L - 9 mmol/L )]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7Dln%5B1%20-%20%5Cfrac%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7D%7B0.07%20mmol%2FL%2Fs%0A%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7B45%20mmol%2FL%0A%7D%7B9%20mmol%2FL%0A%7D%29%20%2B%20%2845%20mmol%2FL%20-%209%20mmol%2FL%0A%29%5D)
= 
= 27.38 min
Therefore, we can conclude that time taken by the enzyme to hydrolyse 80% of the fat present is 27.38 min.