Answer:
3.1°C
Explanation:
Using freezing point depression expression:
ΔT = Kf×m×i
<em>Where ΔT is change in freezing point, Kf is freezing point depression constant (5.12°c×m⁻¹), m is molality of the solution and i is Van't Hoff factor constant (1 For I₂ because doesn't dissociate in benzene).</em>
Molality of 9.04g I₂ (Molar mass: 253.8g/mol) in 75.5g of benzene (0.0755kg) is:
9.04g ₓ (1mol / 253.8g) = 0.0356mol I₂ / 0.0755kg = 0.472m
Replacing in freezing point depression formula:
ΔT = 5.12°cm⁻¹×0.472m×1
ΔT = 2.4°C
As freezing point of benzene is 5.5°C, the new freezing point of the solution is:
5.5°C - 2.4°C =
<h3>3.1°C</h3>
<em />
1.Strong basses dissociates into ions almost 100%.
But weak basses partially dissociates into ions.
2.Strong basses has pH value smaller but closer to 14 and weak basses has pH value greater but cloaer to 7.
3.strong basses ate highly reactive whereas weak basses are less reactive.
On the off chance that one of the reactants is in overabundance yet you don't know which one it is, you have to compute the hypothetical item mass for the both reactants, with a similar item, and whichever has the lower yield is the one you use to precisely depict masses/sums for the condition, since you can't have more than the non-abundance reactant can create.
Answer:
When hydrogen is passed over hot ferric oxide (FeO) hydrogen reacts with oxygen present in the compound and forms water (H2O) and pure Iron
Explanation:
The correct answer is: [C]:
___________________________________________________________
"<span>pressure and the number of gas molecules are directly related."
___________________________________________________________
<u>Note</u>: The conclusion was: "</span> as the pressure in a system increases, the number of gas molecules increases" — over the course of many trials.
This means that the "pressure" and the "number of gas molecules" are directly related.
Furthermore, this conclusion is consistent with the "ideal gas law" equation:
" PV = nRT " ;
____________________________________________________________
in which:
"P = Pressure" ;
"n = number of gas molecules" ;
___________________________________________________________
All other factors held equal, when "n" (the "number of gas molecules")
increases in value (on the "right-hand side" of the equation), the value for "P" (the "pressure" — on the "left-hand side" of the equation), increases.
___________________________________________________________