In 1905 Albert Einstein had proposed a solution to the problem of observations made on the behaviour of light having characteristics of both wave and particle theory. From work of Plank on emission of light from hot bodies, Einstein suggested that light is composed of tiny particles called <span>photons, </span>and each photon has energy.
Light theory branches in to the physics of <span>quantum mechanics, </span>which was conceptualised in the twentieth century. Quantum mechanics deals with behaviour of nature on the atomic scale or smaller.
As a result of quantum mechanics, this gave the proof of the dual nature of light and therefore not a contradiction.
Answer:
0.0184
Explanation:
Let's consider the following reaction at equilibrium.
2 HI(g) ⇌ H₂(g) + I₂(g)
The concentration equilibrium constant (Kc) is equal to the product of the concentration of the products raised to their stoichiometric coefficients divided by the product of the concentration of the reactants raised to their stoichiometric coefficients.
Kc = [H₂] × [I₂] / [HI]²
Kc = (4.78 × 10⁻⁴) × (4.78 × 10⁻⁴) / (3.52 × 10⁻³)²
Kc = 0.0184
Answer: 4Kcal
Explanation:
H= mcø
M=200g
C= 1 cal/g/°c
Ø= 40-20=20°c
H= 200*1*20= 4000calories= 4Kcal
Answer:
A
Explanation:
molarity=moles of solute/liter of solution
molarity=0.26/0.3
molarity=0.87molar