Part a)
Answer: 5*sqrt(2pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(50/pi)
r = sqrt(50)/sqrt(pi)
r = (sqrt(50)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(50pi)/pi
r = sqrt(25*2pi)/pi
r = sqrt(25)*sqrt(2pi)/pi
r = 5*sqrt(2pi)/pi
Note: the denominator is technically not able to be rationalized because of the pi there. There is no value we can multiply pi by so that we end up with a rational value. We could try 1/pi, but that will eventually lead back to having pi in the denominator. I think your teacher may have made a typo when s/he wrote "rationalize all denominators"
============================================================
Part b)
Answer: 3*sqrt(3pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(27/pi)
r = sqrt(27)/sqrt(pi)
r = (sqrt(27)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(27pi)/pi
r = sqrt(9*3pi)/pi
r = sqrt(9)*sqrt(3pi)/pi
r = 3*sqrt(3pi)/pi
Note: the same issue comes up as before in part a)
============================================================
Part c)
Answer: sqrt(19pi)/pi
-----------------------
Work Shown:
r = sqrt(A/pi)
r = sqrt(19/pi)
r = sqrt(19)/sqrt(pi)
r = (sqrt(19)*sqrt(pi))/(sqrt(pi)*sqrt(pi))
r = sqrt(19pi)/pi
Answer:
Cash
Step-by-step explanation:
You got that money just have damian ask fo that cash$$$$$$
Answer:
(a). 300r + 425p ≤ 6,600
(b). No, it’s not considered overweight
Step-by-step explanation:
In this question, we are to write an equation that shows the number of refrigerators and pianos the truck could carry.
Let the number of refrigerators be r and the number of pianos be p
By using their individual weights, the equation is as follows;
300r + 425p ≤ 6,600
To the second question, we want to consider if 10 refrigerators and 8 pianos are overload.
To get this, we simply multiply the number of each by their individual weights;
That would be;
300(10) + 425(8) = 3000 + 3,400 = 6,400 lbs
This is not considered overweight as it is less than 6,600 lbs
Volume of a cube with side lengths of 2, 2, and 2.
2³=8 m³
Volume of a cube with 4,4, and 4
4³=64 m³
Conclusion: The volume would be squared, or square rooted, depending on which way you are going.