Since f(x) is (strictly) increasing, we know that it is one-to-one and has an inverse f^(-1)(x). Then we can apply the inverse function theorem. Suppose f(a) = b and a = f^(-1)(b). By definition of inverse function, we have
f^(-1)(f(x)) = x
Differentiating with the chain rule gives
(f^(-1))'(f(x)) f'(x) = 1
so that
(f^(-1))'(f(x)) = 1/f'(x)
Let x = a; then
(f^(-1))'(f(a)) = 1/f'(a)
(f^(-1))'(b) = 1/f'(a)
In particular, we take a = 2 and b = 7; then
(f^(-1))'(7) = 1/f'(2) = 1/5
Answer:
x= -7/4
Step-by-step explanation:
8x= -14
Divide both sides by 8
8x/8 = -14/8
Simplify
x= -7/4
Part A Equation and Solve: (16.2x7) Answer: 113.4
Part B Ribbon: 113.4 x4
Part C Combining: 340.2
The expression 15t – 2t not equivalent to 2t – 15t because the negative sign in 15t – 2t belongs to the term 2t.
Solution:
Given expressions are 15t – 2t and 2t – 15t.
To determine 15t – 2t is equivalent to 2t – 15t or not.
Substitute t = 2 in above two expressions.
15t – 2t = 15(2) – 2(2)
= 30 – 4
= 26
2t – 15t = 2(2) – 15(2)
= 4 – 30
= –26
The values of the expressions are different when t = 2.
So, 15t – 2t is not equivalent to 2t – 15t.
Hence the expression 15t – 2t not equivalent to 2t – 15t because the negative sign in 15t – 2t belongs to the term 2t.
Answer:
I do not see any diagrams. Though she had 32 apples before she ate any, 8 in each bag.