Answer:
7 and 11
Explanation:
The amount of sand on the beaches can be found using this formula:
volume (m3) = length (m) × width (m) × depth (m)
(6 × 108 m) × 60 m × 20 m = 7 × 1011 m3
Therefore, there would be a total of 7 × 1011 cubic meters of sand on the beaches.
The volume of a 1.86-carat diamond in cubic centimeters is 0.106 cm³
Given,
The density of a diamond is 3.513 g/cm³.
We have to find out the volume of a 1.86-carat diamond in cubic centimeters.
Convert the units of the diamond from carat to grams, we have:
(1.86 carats) x (0.200 g / 1 carat) = 0.372 g
The volume of the diamond is obtained by dividing the mass by the density, therefore using the formula, we get
v = m / d
v = 0.372 g / (3.51 g/cm³) = 0.1059 cm³
or, v = 0.106 cm³ (approx)
Therefore, the volume of a 1.86-carat diamond is approximately 0.106 cm³.
To learn more about the volume, visit: brainly.com/question/1578538
#SPJ9
Give 3 Examples of where potential energy was converted to knlinetic energy:
Curtain
A ball before moving
An apple from the tree then falling down
When the Curtains are still, we call the that potential energy. If you move the curtains around, that is kinetic energy
The ball is still, that is potential energy. Then the ball is moving, the is kinetic energy
There is a apple ganging from a tree, that is potential energy. That apple is fall, this is kinetic energy
Hope this helps
Don't type or write in the answer, I'm not sure what from the lab means. These are a few potential into kinetic energy I could have think of!
Solving part-1 only
#1
KMnO_4
- Transition metal is Manganese (Mn)
#2
Actually it's the oxidation number of Mn
Let's find how?




- x is the oxidation number
#3
- Purple as per the color of potassium permanganate
#4

The one that is observed or measured in the experiment, and it is known as the dependent variable.