In order to cause electrons to be ejected from the surface of this metal you should use light of a shorter wavelength.
The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid state and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.
This process is also often referred to as photoemission. In terms of their behaviour and their properties, photoelectrons are no different from other electrons. The prefix, photo-, simply tells us that the electrons have been ejected from a metal surface by incident light.
The photons of a light beam have a characteristic energy, called photon energy, which is proportional to the frequency of the light. In the photoemission process, when an electron within some material absorbs the energy of a photon and acquires more energy than its binding energy, it is likely to be ejected. If the photon energy is too low, the electron is unable to escape the material. Since an increase in the intensity of low-frequency light will only increase the number of low-energy photons, this change in intensity will not create any single photon with enough energy to dislodge an electron. Moreover, the energy of the emitted electrons will not depend on the intensity of the incoming light of a given frequency, but only on the energy of the individual photons.
Learn more about Photoelectric effect here : brainly.com/question/1408276
#SPJ4
Answer:
60m
Explanation:
According to one of the equation of motions, v² = u²+2as where;
S is the distance
u is the initial velocity
v is the final velocity
a is the acceleration
Since the arrow is shot upwards, the body will experience a negative acceleration due to gravity i.e a = -g
Therefore our equation will become;
v² = u² - 2gS
Given u = 40m/s, g = 10m/s², S = 75m
Substituting to get the final velocity of the arrow we will have;
v² = 40²-2(10)(75)
v² = 1600 - 1500
v² = 100
v = √100
v = 10m/s
Total distance traveled is speed of the object × time taken
Total distance traveled = 10 × 6
= 60m
The arrow has therefore traveled 60m after 6seconds
Answer: Car collide with man
Explanation:
Given
Speed of car is 
Distance of the man from the car is 
Reaction time 
Rate of deceleration 
Distance traveled in the reaction time 
Net effective distance to cover 
Distance required to stop the car

Require distance is more than that of net effective distance. Hence, car collides with the man.
Answer:The net force acting on the car is 3×103 Newtons
Explanation: