Answer
A is the correct answer
Explanation:
mark me as brainlist and follow me
Answer:
Time to pass the train=0.05 h
How far the car traveled in this time=4.75 Km
Explanation:
We have that the train and the car are moving in the same direction, the difference between the speed of the vehicles is:

We will use this difference in the speed of the car an train to calculate how much time take the car to pass the train. For this we have that the train is 1km long and the car is moving with a speed of 20km/h (we use this value because is the speed that the car have in advantage of the train) then for a movement with a constant speed we have:

Where x is the distance, t is the time and v is the speed. using the data that we have:

This is the time that the car take to pass the train. Now to calculate how far the car have traveled in this time we have to considered the speed of 95Km/h of the car, then:

Answer:
Explanation:
Impulse of reaction force of floor = change in momentum
Velocity of impact = √ 2gh₁
= √ 2 x 9.8 x 1.5 = 5.4 m /s.
velocity of rebound = √2gh₂
= √ 2x 9.8 x 1
= 4.427 m / s.
Initial momentum = .050 x 5.4 = .27 kg m/s
Final momentum = .05 x 4.427 = .22 kg.m/s
change in momentum = .27 - .22 = .05 kg m/s
Impulse = .05 kg m /s
Impulse = force x time
force = impulse / time
.05 / .015 = 3.33 N.
kinetic energy = 1/2 m v²
Initial kinetic energy = 1/2 x .05 x 5.4²
= 0.729 J
Final Kinetic Energy =1/2 x .05 x 4.427²
= 0.489 J
Change in Kinetic energy =0 .24 J
Lost kinetic energy is due to conversion of energy into sound light etc.
The appropriate answer is c. silty clay loam. This is the most likely soil that was present in the garden before sand was added to balance it. This type of soil contains an even mix of silt and clay. This type of soil does not drain well and tends to hold water. This would not be suitable for most garden variety plants. Adding sand to the soil ensures better drainage and removes moisture that would rot roots or create conditions for fungi to develop.
Answer:
when this charged glass rod is brought towards the metal ball it will acquire a charge opposite to that of charge body brought close to it without touching it but it will acquire the same charge if the charged object touches it