The current that would pass through the 30 ohms resistor is 2 A.
<h3>What is electric current?</h3>
Electric current is the rate of flow of electric charge round a conductor.
To calculate the electric current that would pass through the 30 ohms resistor, we use the formula below
Formula:
- I = V/Rt........... Equation 1
Where:
- I = Electric current passing through the 30 ohms resistor
- V = Voltage
- Rt = Total or effective resistance of the resistors.
From the question,
Given:
- V = 100 volts
- Rt = (30+20) ohms (since both resistors are connected in series)
Substitute these values into equation 1
Hence, The current that would pass through the 30 ohms resistor is 2 A.
Learn more about electric current here: brainly.com/question/1100341
SM/LAN which would demonstrate that there is a Cisco Internal Services Module or a remote LAN card. LAN interfaces the PC equipment in a confined territory, for example, an office or home. Normally, LANs utilize wired associations with connect the PCs to each other and to an assortment of fringe gadgets, for example, printers. LAN clients can speak with each other by talk or email.
The mass of the box would be 30!
An element which is highly conductive, highly reactive, soft, and lustrous is most likely an alkali metal.
Alkali metals are in group 1 of the Periodic table which means that they have only a single valence electron.
This causes them to be soft and highly reactive because:
- The single valance electron leads to weak bonds amongst the element's atoms which makes them soft
- The elements want to lose the single valance electron so as to become stable so they will react with other elements to give away the electron.
Examples of alkali electrons include:
- Lithium
- Sodium
- Potassium etc
In conclusion therefore, alkali metals are highly reactive and soft and so the element described above is most likely an alkali metal.
<em>Find out more at brainly.com/question/18722874.</em>