Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
AS
work done =W = F.d = F d cosФ (Ф is angle between force F and displacement d) If a body/object is moving on a smooth surface (friction-less surface ) .There is no force acting on that body. F=0 so W=FdcosФ= (0)dcosФ ⇒ W=0
Now if a body is facing some amount of force but under the action of force there is no displacement covered. d=0 so W =FdcosФ= F(0)cosФ ⇒W=0
example: A person is applying a force on rigid wall but wall remains at rest there is no displacement occurs in wall.
The third term upon which work done dependent is angle between force and displacement i.e Ф. If Ф=90° then W= FdcosФ= Fdcos90⇒ W=0 ( as cos 90°=0)
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
Answer:
Though the question is not specified here, but this information can determine the following quantity: period T= 6 secs, Frequency F=1/6 Hz, speed of rotation V= 2 pi ft/sec and wave length =pi/3 ft
Explanation:
Answer:
When a ray of light passes through a glass slab of a certain thickness, the ray gets displaced or shifted from the original path. This is called lateral shift/displacement.
Explanation:
.