R is proportional to the length of the wire:
R ∝ length
R is also proportional to the inverse square of the diameter:
R ∝ 1/diameter²
The resistance of a wire 2700ft long with a diameter of 0.26in is 9850Ω. Now let's change the shape of the wire, adding and subtracting material as we go along, such that the wire is now 2800ft and has a diameter of 0.1in.
Calculate the scale factor due to the changed length:
k₁ = 2800/2700 = 1.037
Scale factor due to changed diameter:
k₂ = 1/(0.1/0.26)² = 6.76
Multiply the original resistance by these factors to get the new resistance:
R = R₀k₁k₂
R₀ = 9850Ω, k₁ = 1.037, k₂ = 6.76
R = 9850(1.037)(6.76)
R = 69049.682Ω
Round to the nearest hundredth:
R = 69049.68Ω
Answer:
f1 = -3.50 m
Explanation:
For a nearsighted person an object at infinity must be made to appear to be at his far point which is 3.50 m away. The image of an object at infinity must be formed on the same side of the lens as the object.
∴ v = -3.5 m
Using mirror formula,
i/f1 = 1/v + 1/u
Where f1 = focal length of the contact lens, v = image distance = -3.5 m, u = object distance = at infinity(∞) = 1/0
∴ 1/f1 = (1/-3.5) + 1/infinity
Note that, 1/infinity = 1/(1/0) = 0/1 =0.
∴ 1/f1 = 1/(-3.5) + 0
1/f1 = 1/(-3.5)
Solving the equation by finding the inverse of both side of the equation.
∴ f1 = -3.50 m
Therefore a converging lens of focal length f1 = -3.50 m
would be needed by the person to see an object at infinity clearly
To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:


Here,
m = mass
v = Velocity
Our values are given as,


Replacing,


Therefore the mechanical energy lost due to friction acting on the runner is 907J
Answer:
I think its C, even with the typo.