Answer:
v_s = 34.269 m / s
Explanation:
This is a Doppler effect exercise, in this case the observer is fixed and the sound source is moving.
f ’= f
where the negative sign is used for when the source approaches the observer and the positive sign for when the source moves away from the observer
In this case when f ’= 5500 Hz approaches and when f’ = 4500 Hz moves away, let's write the two expressions together
5500 = f (
)
4500 = f (
)
let's solve these two equations
1.222 (v-v_s) = v + v_s
v_s (1+ 1.22) = v (1.222 -1)
v_s = v
the speed of sound in air is v = 343 m / s
v_s = 343 0.09990
v_s = 34.269 m / s
Answer:
<u><em>First Reaction:</em></u>
=> 
<u><em>Second Reaction:</em></u>
=> 
<u><em>Combined Reaction:</em></u>
=> 
One type is microwaves
Microwaves are used for radio and radar communications
Also used to cook food
Answer:
d = 5.10 m
Explanation:
As we know that here on the plane of the inclined there is no frictional force
So in these cases we can say that total mechanical energy will always remains conserved
so here we can say that
spring potential energy = gravitational potential energy of the block
as we know from the formula

now plug in the values in it



now as we know that the angle of inclination is 60 degree and height raised is 4.42 m
so here maximum distance moved along the inclined plane will be


