1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
8

Ernest Rutherford (who was the first person born in New Zealand to be awarded the Nobel Prize in chemistry) demonstrated that nu

clei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 nuclei (197Au). During this experiment, the energy of the incoming helium nucleus was 8.00 × 10^-13 J, and the masses of the helium and gold nuclei were 6.68 × 10^-27 kg and 3.29 × 10^-25 kg, respectively (note that their mass ratio is 4 to 197).
a. If a helium nucleus scatters to an angle of 1200 during an elastic collision with a gold nucleus, calculate the helium nucleus's final speed and the final velocity (magnitude and direction) of the gold nucleus.
b. What is the final kinetic energy of the helium nucleus?
Physics
1 answer:
g100num [7]3 years ago
5 0

Answer:

the velocity of the gold nuclei  v'_2 = 5.34 *10^5 \ m/s

the angle of the velocity of gold nuclei = 29.64° clockwise (i.e down the horizontal)

the final kinetic energy of helium nucleus is 7.52 *10^{-13} \ \ J

Explanation:

The formula for kinetic Energy (K.E) is:

K.E = \frac{1}{2}m_1v_1^2

v_1 = (\frac{2K.E}{m_1})^{1/2}

where;

m_1 = mass of the helium

v_1 = velocity of helium

replacing 8.00*10^{-13} \ J \ for \ K.E and m \ with \ 6.68*10^{-27} \ kg; we have :

v_1 = (\frac{2*8.00*10^{-13 \  }J}{6.68*10^{-27} kg})^{1/2}

v_1 = 1.548*10^7  \  m/s

Applying conservation of momentum along x- axis since the collision is elastic

m_1v_1 =m_1v'_1cos \theta _1 + m_2v_2' cos \theta_2         ------ equation (1)

where

m_1 \ and \ m_2 = mass of helium and gold respectively

v_1 = initial velocity of helium

v'_1 \ and  \ v'_2 = final velocity of gold

\theta _1 \ and  \ \theta _2 = scattered angle for helium  and gold respectively

Along the y - axis; the equation for conservation of momentum is :

0 = m_1 v_1' \theta_1 + m_2 v_2' sin \theta _2  ---- equation (2)

Equating equation (1) and (2); we have:

(v'_2)^2  = \frac{m_1^2}{m_2^2}[(v_1)^2 - 2 v_1v_1' xos \theta _1 + (v'_1)^2]    ----- equation (3)

However, the conservation of internal kinetic energy guves:

\frac{1}{2}m_1v_1^2 = \frac{1}{2}m_1(v_1')^2 + \frac{1}{2}m_2(v'_2)^2 \frac{m_1}{m_2}

Making (v_2')^2 the subject of the formula ; we have:

(v_2')^2 = \frac{m_1}{m_2}(v_1^2-(v_1')^2)      ----- equation (4)

Replacing the expression of (v'_2)^2 in equation (3) into equation (4) ; we have

[(1+\frac{m_1}{m_2})(v_1')^2-2(\fracm_1}{m_2}(v_1'cos \theta _1)v_1 - (1-\frac{m_1}{m_2})(v_1)^2] = 0

In the above expression;

replacing ;

1.548*10^7 \ m/s for \ v_1;   \theta = 120^0;   m_1 = 6.68*10^{-27} \ kg;  m_2 = 3.29*10^{-25}\ kg; we have:

[1 + ( \frac{6.68*10^{-27}}{3.29*10^{-25}})(v_1')^2 - ( 2(\frac{6.68*10^{-27}}{3.29*10^{-25}}) (1.548*10^7)cos 120^0)v'_1-(1-\frac{6.68*10^{-27}}{3.29*10^{-25}})(1.548*10^7)^2 = 0

1.02v^2 - (3.143 *10^5)v -2.348*10^{14} = 0

The above is a quadratic equation; now solving by using the quadratic formula; we have:

v_1' = \frac{-3.143*10^5 \pm \sqrt{(3.143*10^5)^2 -4(1.02)(-2.348*10^{14})}}{2(1.02)}

since we are considering the positive value from the above expression; we have

v'_1 = 1.50*10^7 \ m/s

NOW; we substitute our known values into equation (4) in order to solve for v_2'; we have:

(v'_2 )^2 = \frac {6.68*10^{23}}{3.29*10^{-23}}((1.548*10^7)^2-(1.502*10^7)^2)

(v'_2 )^2 =2.848*10^{11} \ m^2/s^2

(v'_2 )=\sqrt{2.848*10^{11} \ m^2/s^2}

v'_2 = 5.34 *10^5 \ m/s

Therefore; the velocity of the gold nuclei  v'_2 = 5.34 *10^5 \ m/s

From equation (2)

0 = m_1 v_1' \theta_1 + m_2 v_2' sin \theta _2

Therefore replacing our known values and solving for \theta_2; we have:

sin \theta _2 =\frac{(6.68*10^{-27})(1.50*10^7)sin 120^0}{(3.29*10^{-25}(5.34*10^5)}

sin \theta _2 = -0.4946

\theta _2 =sin^{-1}( -0.4946)

\theta _2 = -29.64^0

∴ the angle of the velocity of gold nuclei = 29.64° clockwise (i.e down the horizontal)

b) Equation to determine the final kinetic energy (K.E_f)of helium is:

K.E_f = \frac{1}{2}m_1(v_1')^2

= \frac{1}{2}(6.68*10^{-27})}(1.50*10^7)^2

= 7.52 *10^{-13} \ \ J

Thus, the final kinetic energy of helium nucleus  is 7.52 *10^{-13} \ \ J

I hope this explanation helps alot!.

You might be interested in
Describe in short the working system of a water pump ​
Monica [59]
The pump is powered by an electric motor that drives an impeller, or centrifugal pump. The impeller moves water, called drive water, from the well through a narrow orifice, or jet, mounted in the housing in front of the impeller.
5 0
4 years ago
An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then rel
pshichka [43]

Answer:

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

Explanation:

Given that

s = 9 cos(t) + 9 sin(t), t ≥ 0

Then acceleration and velocity is

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

5 0
3 years ago
A ray of white light moves through the air and strikes the surface of water in a beaker. The index of refraction of the water is
Naily [24]

Answer:

except ii and iii

Explanation:

The angle of reflection is the angle to the normal the white rays strikes the water surface and it is the incidence angle. Since the white light is moving from less dense medium to a denser medium or a medium with a higher refractive index; the angle of refraction will be less than 30 degrees. Total internal reflection cannot occur because the white light is traveling from a less dense medium to a denser medium.

3 0
3 years ago
Which event is an example of condensation?
WITCHER [35]

Answer:

D

Explanation:

7 0
3 years ago
Station 1: Sierra is running in a school track
timofeeve [1]

Answer:

The body systems that work together to maintain the energy Sierra needs are;

The digestive system, the respiratory system, and the circulatory system

Explanation:

Cellular respiration in the body cells require oxygen to produce energy which are used by the muscles and other body cells. Carbon dioxide is also produced and is the build up of carbon dioxide has to be removed from the body as the by product of cellular respiration which is toxic at the cell level

Therefore, the body systems that work together to maintain the energy Sierra needs are;

The digestive system; Takes in the energy containing food and brakes them into chemicals that are transported to the cells for cellular respiration

The respiratory system; Takes in oxygen and removes carbon dioxide from the blood from and to the atmosphere

The circulatory system; Supplies food and oxygen from the digestive and respiratory system to the cells and transports produced carbon dioxide from the cells to the lungs from where it is passed out of the body by th respiratory system.

4 0
3 years ago
Other questions:
  • Two objects, one having three times the mass of the other, are dropped from the same height in a vacuum. At the end of their fal
    13·2 answers
  • What impulse is needed to slow a 45kg object from 15m/s to 12m/s please show who to work problem
    8·1 answer
  • CRIMINOLOGY
    7·1 answer
  • A car starts off at a 0mph the final velocity is 203mph and the acceleration is an AVERAGE of 2.93ft/s^2 and it is traveling up
    9·1 answer
  • Which is not one of the basic nutrients of your body?
    15·1 answer
  • A uniform rod of length 0.8 m and mass 1.4 kg, has two point masses at each end. The point mass on the left end has a mass 1.2 k
    7·1 answer
  • What determines whether a real or a virtual image is formed from a concave mirror?​
    8·1 answer
  • 4 What type of circuit is described by each of the following statements?
    9·1 answer
  • Which of the following has the most kinetic energy?
    11·1 answer
  • A microwaveable cup-of-soup package needs to be constructed in the shape of cylinder to hold 550 cubic centimeters of soup. The
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!