1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
8

Ernest Rutherford (who was the first person born in New Zealand to be awarded the Nobel Prize in chemistry) demonstrated that nu

clei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 nuclei (197Au). During this experiment, the energy of the incoming helium nucleus was 8.00 × 10^-13 J, and the masses of the helium and gold nuclei were 6.68 × 10^-27 kg and 3.29 × 10^-25 kg, respectively (note that their mass ratio is 4 to 197).
a. If a helium nucleus scatters to an angle of 1200 during an elastic collision with a gold nucleus, calculate the helium nucleus's final speed and the final velocity (magnitude and direction) of the gold nucleus.
b. What is the final kinetic energy of the helium nucleus?
Physics
1 answer:
g100num [7]3 years ago
5 0

Answer:

the velocity of the gold nuclei  v'_2 = 5.34 *10^5 \ m/s

the angle of the velocity of gold nuclei = 29.64° clockwise (i.e down the horizontal)

the final kinetic energy of helium nucleus is 7.52 *10^{-13} \ \ J

Explanation:

The formula for kinetic Energy (K.E) is:

K.E = \frac{1}{2}m_1v_1^2

v_1 = (\frac{2K.E}{m_1})^{1/2}

where;

m_1 = mass of the helium

v_1 = velocity of helium

replacing 8.00*10^{-13} \ J \ for \ K.E and m \ with \ 6.68*10^{-27} \ kg; we have :

v_1 = (\frac{2*8.00*10^{-13 \  }J}{6.68*10^{-27} kg})^{1/2}

v_1 = 1.548*10^7  \  m/s

Applying conservation of momentum along x- axis since the collision is elastic

m_1v_1 =m_1v'_1cos \theta _1 + m_2v_2' cos \theta_2         ------ equation (1)

where

m_1 \ and \ m_2 = mass of helium and gold respectively

v_1 = initial velocity of helium

v'_1 \ and  \ v'_2 = final velocity of gold

\theta _1 \ and  \ \theta _2 = scattered angle for helium  and gold respectively

Along the y - axis; the equation for conservation of momentum is :

0 = m_1 v_1' \theta_1 + m_2 v_2' sin \theta _2  ---- equation (2)

Equating equation (1) and (2); we have:

(v'_2)^2  = \frac{m_1^2}{m_2^2}[(v_1)^2 - 2 v_1v_1' xos \theta _1 + (v'_1)^2]    ----- equation (3)

However, the conservation of internal kinetic energy guves:

\frac{1}{2}m_1v_1^2 = \frac{1}{2}m_1(v_1')^2 + \frac{1}{2}m_2(v'_2)^2 \frac{m_1}{m_2}

Making (v_2')^2 the subject of the formula ; we have:

(v_2')^2 = \frac{m_1}{m_2}(v_1^2-(v_1')^2)      ----- equation (4)

Replacing the expression of (v'_2)^2 in equation (3) into equation (4) ; we have

[(1+\frac{m_1}{m_2})(v_1')^2-2(\fracm_1}{m_2}(v_1'cos \theta _1)v_1 - (1-\frac{m_1}{m_2})(v_1)^2] = 0

In the above expression;

replacing ;

1.548*10^7 \ m/s for \ v_1;   \theta = 120^0;   m_1 = 6.68*10^{-27} \ kg;  m_2 = 3.29*10^{-25}\ kg; we have:

[1 + ( \frac{6.68*10^{-27}}{3.29*10^{-25}})(v_1')^2 - ( 2(\frac{6.68*10^{-27}}{3.29*10^{-25}}) (1.548*10^7)cos 120^0)v'_1-(1-\frac{6.68*10^{-27}}{3.29*10^{-25}})(1.548*10^7)^2 = 0

1.02v^2 - (3.143 *10^5)v -2.348*10^{14} = 0

The above is a quadratic equation; now solving by using the quadratic formula; we have:

v_1' = \frac{-3.143*10^5 \pm \sqrt{(3.143*10^5)^2 -4(1.02)(-2.348*10^{14})}}{2(1.02)}

since we are considering the positive value from the above expression; we have

v'_1 = 1.50*10^7 \ m/s

NOW; we substitute our known values into equation (4) in order to solve for v_2'; we have:

(v'_2 )^2 = \frac {6.68*10^{23}}{3.29*10^{-23}}((1.548*10^7)^2-(1.502*10^7)^2)

(v'_2 )^2 =2.848*10^{11} \ m^2/s^2

(v'_2 )=\sqrt{2.848*10^{11} \ m^2/s^2}

v'_2 = 5.34 *10^5 \ m/s

Therefore; the velocity of the gold nuclei  v'_2 = 5.34 *10^5 \ m/s

From equation (2)

0 = m_1 v_1' \theta_1 + m_2 v_2' sin \theta _2

Therefore replacing our known values and solving for \theta_2; we have:

sin \theta _2 =\frac{(6.68*10^{-27})(1.50*10^7)sin 120^0}{(3.29*10^{-25}(5.34*10^5)}

sin \theta _2 = -0.4946

\theta _2 =sin^{-1}( -0.4946)

\theta _2 = -29.64^0

∴ the angle of the velocity of gold nuclei = 29.64° clockwise (i.e down the horizontal)

b) Equation to determine the final kinetic energy (K.E_f)of helium is:

K.E_f = \frac{1}{2}m_1(v_1')^2

= \frac{1}{2}(6.68*10^{-27})}(1.50*10^7)^2

= 7.52 *10^{-13} \ \ J

Thus, the final kinetic energy of helium nucleus  is 7.52 *10^{-13} \ \ J

I hope this explanation helps alot!.

You might be interested in
Why is charge usually transferred by electrons rather than by protons?
Alexus [3.1K]
This is because most of the atom cannot move due to being held in place by surronding atoms, but electrons can move around and travel 
7 0
3 years ago
The actual depth of a shallow pool 1.00 m deep is not the same as the apparent depth seen when you look straight down at the poo
DedPeter [7]

Answer:

d' = 75.1 cm

Explanation:

It is given that,

The actual depth of a shallow pool is, d = 1 m

We need to find the apparent depth of the water in the pool. Let it is equal to d'.

We know that the refractive index is also defined as the ratio of real depth to the apparent depth. Let the refractive index of water is 1.33. So,

n=\dfrac{d}{d'}\\\\d'=\dfrac{d}{n}\\\\d'=\dfrac{1\ m}{1.33}\\\\d'=0.751\ m

or

d' = 75.1 cm

So, the apparent depth is 75.1 cm.

4 0
3 years ago
To calculate the velocity of an object the of the position vs time graph should be calculated
frutty [35]
<span>The vertical axis represents the velocity of the object</span>
3 0
3 years ago
Read 2 more answers
Define , gravitational acceleration
Vitek1552 [10]
The simplest answer would be "acceleration due to gravity." 

The exact value of this acceleration changes depending on which planet your on (for example).
3 0
2 years ago
Which of the following is an example of sound energy
dedylja [7]
Sound energy is produced when an object vibrates so an example would be a telephone ringing or someone playing a bass guitar 
4 0
3 years ago
Other questions:
  • Boss tweed encourages his associates to work "like a well-oiled machine", thus providing his workers with
    10·2 answers
  • Being talked into volunteering in a homeless shelter is an example of negative peer pressure. Please select the best answer from
    14·2 answers
  • A small 22 kilogram canoe is floating downriver at a speed of 2 m/s. What is the canoe's kinetic energy
    15·2 answers
  • A space probe on the surface of Mars sends a radio signal back to the Earth, a distance of 8.70 ✕ 107 km. Radio waves travel at
    6·1 answer
  • A long wire carries a current density proportional to the distance from its center, J=(Jo/ro)•r, where Jo and ro are constants a
    12·1 answer
  • Help please ! Ill give brainliest !! ☁️✨
    7·1 answer
  • The momentum of a 3000 kg truck is 6.36 x 104 kg·m/s. At what speed is the truck traveling? m/s
    8·1 answer
  • A wave oscillates 5.0 times a second and has a speed of 8.0 m/s .What is the frequency of this wave?
    9·1 answer
  • I NEED HELP ASAP!!!
    6·1 answer
  • Is the answer 1.05m?? help me please. i just want to confrim my answer :3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!