Answer:
The 95% confidence interval for the percentage of all boards in this shipment that fall outside the specification is (1.8%, 6.2%).
Step-by-step explanation:
In a random sample of 300 boards the number of boards that fall outside the specification is 12.
Compute the sample proportion of boards that fall outside the specification in this sample as follows:

The (1 - <em>α</em>)% confidence interval for population proportion <em>p</em> is:

The critical value of <em>z</em> for 95% confidence level is,

*Use a <em>z</em>-table.
Compute the 95% confidence interval for the proportion of all boards in this shipment that fall outside the specification as follows:

Thus, the 95% confidence interval for the proportion of all boards in this shipment that fall outside the specification is (1.8%, 6.2%).
Answer:
B.
Step-by-step explanation:
The answer is B. The problem says that the slope is 2 and it as the points (3,10) on its line. When looking at the graph, you can see that the line crosses at four on the y-intercept which is why four will be your constant. So, your equation in slope intercept form will become y=2x+4. With this, you can start eliminating the given answers.
You can immediately eliminate c and d because the 2 is negative when it isn't in its slope form. It leaves you with a and b.
When looking at both a and b you now have to look at what your y will become when you sinplify both of them. In choice a, the 2 multiplies with the 3 and gives you 6. Since you have to leave the y by itself you have to subtract 10 from both sides which will leave you with -4. Since your y-intercept isn't negative you know that a isnt the ansewr.
When checking b, you multiply the 2 and -3 to get -6. Since you have to leave the y by itself, you add 10 to each side and end up with 4 which is the same number that crosses the y-axis. and that is how you know it's the right answer.
Answer: No, the answer is 29, this is false.
Step-by-step explanation: 63-x=34
subtract 63 from both sides
34-63= -29
-x=-29
divide both sides by the negative and you get 29
plug in 29 for x, 63-29=34