1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
13

M: -1/2 Point: (-1, 3) Solve for y=mx+b Help

Mathematics
1 answer:
ohaa [14]3 years ago
3 0

Answer:

y= (-1/2)x+(5/2)

Step-by-step explanation:

equation point slope

(y-y1)=m(x-x1)

y-3 = -1/2(x+1) add -3 to both sides and distribute

y=( -x/2) +(-1/2)+3 rewrite 3 as 6/2

y=(-1/2)x +(-1+6/2) solve

y= (-1/2)x+(5/2)

You might be interested in
This table shows the number of points two teams scored in five games
mezya [45]

Answer:

2.16

Step-by-step explanation:

The question is on mean absolute deviation

The general formula ,

Mean deviation = sum║x-μ║/N where  x is the each individual value, μ is the mean and N is number of values

<u>Team 1</u>

Finding the mean ;

mean= \frac{51+47+35+48+64}{5}  =49

Points     Absolute Deviation from mean

51                          2

47                         2

35                        14

48                         1

64                         15

<u>Sum    </u>                34          

Absolute mean deviation = 34/5= 6.8

<u>Team 2</u>

Finding the mean

mean=\frac{27+55+53+38+41}{5} = 42.8

Points                      Absolute deviation from the mean

27                                    15.8

55                                    12.2

53                                     10.2

38                                      4.8

41                                       1.8

<u>Sum                                 44.8        </u>

Absolute deviation from the mean = 44.8/5 =8.96

Solution

Difference in mean absolute deviation of the two teams = 8.96-6.8 = 2.16

5 0
4 years ago
Y''+y'+y=0, y(0)=1, y'(0)=0
mars1129 [50]

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

3 0
3 years ago
Mrs. Humble is filling bags with peanuts to give as gifts. Each bag will contain 1 and 3 over 4 pounds of peanuts. The peanuts c
DerKrebs [107]

Answer:

$8.75

Step-by-step explanation:

STEP TO TAKE TO DETERMINE THE ANSWER

Multiply 13/4 pounds by the cost of one pound of peanut. To do this, convert 13/4 to an improper fraction and then multiply it by $5

1\frac{3}{4} = \frac{7}{4}

\frac{7}{4} × 5 = \frac{35}{4} = 8\frac{3}{4} = $8.75

5 0
3 years ago
Alessia is paid 1.4 times her normal hourly rate for each hour she works over 30 hours in a week. Last week she worked 35 hours
pantera1 [17]
x- normal\ hourly\ rate\\\\&#10;35\ hours\ of\ work:\\&#10;30\ normal\ hours\ and\ 5\ overtime\\\\&#10;30x+5*1,4x=436,60\\\\&#10;30x+7x=436,60\\\\&#10;37x=436,60\ \ \ :37\\\\&#10;x=11,8\$\\\\&#10;\textbf{Alessia's\ normal\ hourly\ rate\ in\ work\ is\ 11,8\$.}
4 0
3 years ago
Read 2 more answers
I NEEED HELP!!!!!! AGAIN
saveliy_v [14]

Answer:

4

Step-by-step explanation:

You add and divide for the mean so you add all of them together (which is 16) and you divide it by 4 (because there are 4 teams) which gives you the answer 4

6 0
3 years ago
Other questions:
  • A parks and recreational board in Birch County is interested in estimating the proportion of its residents in favor of having mo
    14·1 answer
  • Whoever gets it right gets brainliest
    10·2 answers
  • PLEASE HELP!! ONLY RIGHT ANSWERS PLEASE!!!
    11·1 answer
  • The sum of a student's three score is 246. if the first is 14 points more than the second, and the sum of the first two is 6 mor
    14·1 answer
  • If f(x) = x2 – 1 and g(x) = 2x – 3, what is the domain of (F g)(x)
    10·2 answers
  • Wildlife reserve has 7 lion cubs born in the spring and now has 41 total lions. Write an equation to represent the situation.
    8·1 answer
  • Given the function f(x)=5x−6 find f(4).
    11·2 answers
  • A box is filled with 14 green cards, 2 yellow cards, and 2 red cards. A card is chosen at random from the box. What is the proba
    7·1 answer
  • 72 students in sixth grade at Cypress Middle school like pumkin Spice Oreos.If there are 300 Sixth grade students,what percent o
    5·2 answers
  • Salma received a $90 gift card for a coffee store. She used it in buying some coffee that cost $8.33 per pound. After buying the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!