1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marishachu [46]
3 years ago
12

Evaluate the triple integrals below where E is the solid tetrahedron with vertices (0,0,0), (1,0,0), (0,2,0) and (0,0,3). I need

help with finding the boundries using the graph and then solving it.

Mathematics
1 answer:
Korvikt [17]3 years ago
5 0
Hi, We can to calculate the vectors.

And the determinant will be the plan Z

Let  A = (0,03), B =(0,2,0) , C = (1,0,0) and D = (0,0,0)

Then,

AB = B - A

Replacing the points:

AB = (0,2,0) - (0,0,3)

AB = (0i, 2j , -3k)
----------------------------

Already the vector AC = C -A

That's is,

AC = (1,0,0) - (0,0,3)

AC = (1i, 0j, -3k)

Then,

The plan = \left[\begin{array}{ccc}x&y&z\\0&2&-3\\1&0&-3\end{array}\right]

Solving it, we will have:

Plan:  -6x -3y -2z + d = 0

Replacinng any point to find the value of d

Example the point A =(0,0,3)

-6(0) -3(0) -2(3) + d = 0

-6+d = 0

d = 6

Then, The us equation will stay of form following :

-6x -3y -2z +6 = 0

or

6x + 3y +2z -6 = 0

Isolating 2z:

2z = 6 -6x - 3y

Dividing both the sides od equation by 2

z = 3 - 3x - 3y/2

Then,

0  \leq  Z  \leq  3-3x- \frac{3y}{2}

Now, Let's find the <span>domain in xy
</span>
|y
|  (0,2)
|\
|  \
|    \
|       \  (1,0)    
------------------------- x


b = Cut in y

then b will be = 2

As y = ax + b

y = ax + 2

We have the point = (1,0)

Replace in the equation

0 = a(1) + 2

0 = a + 2

Isolate a

a = -2

Then us stay:

y = -2x + 2


0  \leq  y  \leq  -2x+2

-------------------------------------

With  ,


0  \leq  x  \leq  1

----------------------------------------


\\ \int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,  \int\limits^ \frac{3-3x- \frac{3y}{2} }{} _0 {(xy)} \, dzdydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,(3xy -3x^2y - \frac{3xy^2}{2} )dydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \, ( \frac{3xy^2}{2} - \frac{3x^2y^2}{2} - \frac{3xy^3}{6} )|0,(-2x+2)dx&#10; \\ &#10; \\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10;

Now putting 3x/2(-2x+2)²  as commu factor

\\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x- \frac{1}{3} (-2x+2)] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x+ \frac{2x}{3} - \frac{2}{3} ] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[  \frac{1}{3}  - \frac{x}{3}] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2( \frac{1-x}{3} ) } \, dx &#10;&#10;

\\  =  \int\limits^1_0 { \frac{x}{2}(-2x+2)^2(1-x) } \, dx &#10; \\ &#10; \\ =   \int\limits^1_0 { \frac{x}{2}(4x^2-8x+4)(1-x) } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(2x^3-4x^2+2x) (1-x) } \, dx &#10; \\ &#10; \\ = \int\limits^1_0 {(-2x^4+4x^3-2x^2+2x^3-4x^2+2x)} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(-2x^4+6x^3-6x^2+2x)} \, dx &#10; \\ &#10; \\ =  -\frac{2x^5}{5} + \frac{6x^4}{4} - \frac{6x^3}{3} + \frac{2x^2}{2} |(0,1)&#10; \\ &#10; \\ =  -\frac{2}{5} + \frac{6}{4} - \frac{6}{3} + \frac{2}{2}&#10;

\\ =-\frac{2}{5} + \frac{3}{2} - 2 + \frac{2}{2}&#10; \\ &#10; \\ = -\frac{2}{5} -2+ \frac{3+2}{2} &#10; \\ &#10; \\ = -\frac{2}{5} -2 + 5/2 \\ &#10; \\ =  \frac{1}{10} u.v
You might be interested in
8x – 3 = -19<br><br>Who give it fast they have branliest <br>Give the correct answer step by step​
lakkis [162]

Answer:

<h2>x= -2</h2>

Step-by-step explanation:

8x - 3 =  - 19

Collect like terms and simplify

8x =  - 19 + 3 \\ 8x =  - 16

Divide both sides of the equation by 8

\frac{8x}{8}  =  \frac{ - 16}{8}

Simplify

x =  - 2

4 0
3 years ago
Read 2 more answers
(3,1) (1,5) in slope intercept form
Musya8 [376]

Answer:

y= -2x + 7

Step-by-step explanation:

7 0
3 years ago
Mean Value theorem help! BRAINLIEST if you can explain it clearly!!!
Korolek [52]
\bf f(x)=ln(x-5)\qquad [6,8]\qquad \cfrac{df}{dx}=\cfrac{1}{x-5}\\\\&#10;-----------------------------\\\\&#10;\textit{mean value theorem}\qquad f'(c)=\cfrac{f(b)-f(a)}{b-a}\\\\&#10;-----------------------------\\\\&#10;f'(c)=\cfrac{1}{c-5}\qquad thus\quad \cfrac{1}{c-5}=\cfrac{f(8)-f(6)}{8-6}&#10;\\\\\\&#10;\cfrac{1}{c-5}=\cfrac{ln(3)-ln(1)}{2}\implies \cfrac{1}{c-5}=\cfrac{ln(3)-0}{2}&#10;\\\\\\&#10;\cfrac{2}{ln(3)}=c-5\implies \boxed{\cfrac{2}{ln(3)}+5=c}
7 0
3 years ago
Find the value of x.<br><br> A<br> B<br> 8<br> X<br> 4<br> 3<br> D<br> x = [?]<br> C
sergiy2304 [10]

Answer:

6

Step-by-step explanation:

4 x 3 = 12

8 x 3 = 24

12 / 4 = 3

24 / 4 = 6

x must be 6

5 0
2 years ago
What is 55/144 in it’s simplest form?
Aleksandr [31]

Answer:

It doesnt have one

Step-by-step explanation:

It is divided by the gretest factor already.

4 0
3 years ago
Other questions:
  • Which is the graph of the inequality? 3y - 9x ≥ 9
    11·1 answer
  • Ryan estimates that he uses 2/3 cup of syrup each time he eats pancakes.How many times will he be able to eat pancakes without r
    13·1 answer
  • What is the surface area of the square pyramid
    9·1 answer
  • Find the unknown length y in the following pair of similar triangles.
    6·1 answer
  • An ice cream shop sold 48 vanilla milkshakes in a day , which was 40% of the total number of milkshakes sold that day. What was
    10·1 answer
  • Rational number on a number line
    6·1 answer
  • I need answer I’m being timedddd
    8·2 answers
  • What is the probability of choosing a numbered card from a deck of cards? Type your answer as a fraction.
    7·2 answers
  • Help me for 20 points
    7·2 answers
  • Need some help!<br> please be specific on how to do it
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!