1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marishachu [46]
3 years ago
12

Evaluate the triple integrals below where E is the solid tetrahedron with vertices (0,0,0), (1,0,0), (0,2,0) and (0,0,3). I need

help with finding the boundries using the graph and then solving it.

Mathematics
1 answer:
Korvikt [17]3 years ago
5 0
Hi, We can to calculate the vectors.

And the determinant will be the plan Z

Let  A = (0,03), B =(0,2,0) , C = (1,0,0) and D = (0,0,0)

Then,

AB = B - A

Replacing the points:

AB = (0,2,0) - (0,0,3)

AB = (0i, 2j , -3k)
----------------------------

Already the vector AC = C -A

That's is,

AC = (1,0,0) - (0,0,3)

AC = (1i, 0j, -3k)

Then,

The plan = \left[\begin{array}{ccc}x&y&z\\0&2&-3\\1&0&-3\end{array}\right]

Solving it, we will have:

Plan:  -6x -3y -2z + d = 0

Replacinng any point to find the value of d

Example the point A =(0,0,3)

-6(0) -3(0) -2(3) + d = 0

-6+d = 0

d = 6

Then, The us equation will stay of form following :

-6x -3y -2z +6 = 0

or

6x + 3y +2z -6 = 0

Isolating 2z:

2z = 6 -6x - 3y

Dividing both the sides od equation by 2

z = 3 - 3x - 3y/2

Then,

0  \leq  Z  \leq  3-3x- \frac{3y}{2}

Now, Let's find the <span>domain in xy
</span>
|y
|  (0,2)
|\
|  \
|    \
|       \  (1,0)    
------------------------- x


b = Cut in y

then b will be = 2

As y = ax + b

y = ax + 2

We have the point = (1,0)

Replace in the equation

0 = a(1) + 2

0 = a + 2

Isolate a

a = -2

Then us stay:

y = -2x + 2


0  \leq  y  \leq  -2x+2

-------------------------------------

With  ,


0  \leq  x  \leq  1

----------------------------------------


\\ \int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,  \int\limits^ \frac{3-3x- \frac{3y}{2} }{} _0 {(xy)} \, dzdydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,(3xy -3x^2y - \frac{3xy^2}{2} )dydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \, ( \frac{3xy^2}{2} - \frac{3x^2y^2}{2} - \frac{3xy^3}{6} )|0,(-2x+2)dx&#10; \\ &#10; \\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10;

Now putting 3x/2(-2x+2)²  as commu factor

\\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x- \frac{1}{3} (-2x+2)] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x+ \frac{2x}{3} - \frac{2}{3} ] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[  \frac{1}{3}  - \frac{x}{3}] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2( \frac{1-x}{3} ) } \, dx &#10;&#10;

\\  =  \int\limits^1_0 { \frac{x}{2}(-2x+2)^2(1-x) } \, dx &#10; \\ &#10; \\ =   \int\limits^1_0 { \frac{x}{2}(4x^2-8x+4)(1-x) } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(2x^3-4x^2+2x) (1-x) } \, dx &#10; \\ &#10; \\ = \int\limits^1_0 {(-2x^4+4x^3-2x^2+2x^3-4x^2+2x)} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(-2x^4+6x^3-6x^2+2x)} \, dx &#10; \\ &#10; \\ =  -\frac{2x^5}{5} + \frac{6x^4}{4} - \frac{6x^3}{3} + \frac{2x^2}{2} |(0,1)&#10; \\ &#10; \\ =  -\frac{2}{5} + \frac{6}{4} - \frac{6}{3} + \frac{2}{2}&#10;

\\ =-\frac{2}{5} + \frac{3}{2} - 2 + \frac{2}{2}&#10; \\ &#10; \\ = -\frac{2}{5} -2+ \frac{3+2}{2} &#10; \\ &#10; \\ = -\frac{2}{5} -2 + 5/2 \\ &#10; \\ =  \frac{1}{10} u.v
You might be interested in
Can someone do this for me please?! Just the answer pls
stiv31 [10]

Answer:

see the attachment photo!

3 0
2 years ago
Solve for xxx. Your answer must be simplified. -4+x≤9
Degger [83]

Answer:

x≤13

Step-by-step explanation:

-4+x≤9

Add 4 to each side

-4+4+x≤9+4

x≤13

5 0
3 years ago
Which word describes the slope of the line?<br> positive<br> negative<br> zero<br> undefined
valkas [14]

Answer:

If it is horizontal then it is zero, if it is vertical then it is undefined

Step-by-step explanation:

horizontal=  <------------->

             ^

vertical=|    (up and down)

             v

4 0
3 years ago
Read 2 more answers
Guys i need help again lol
tresset_1 [31]

Answer:

the answer to this question can be option B

6 0
3 years ago
Find all points on the x-axis that are 14 units from the point (6,-7) All points on the x-axis that are 14 units from the point
Maksim231197 [3]

Answer: (6+7\sqrt{3},0)\text{ and }(6-7\sqrt{3},0) are the required points.

or  (18.124,0) and ( -6.124,0) are the required points.

Step-by-step explanation:

Let (x,0) be the point on x -axis that are 14 units from the point (6,-7) .

Then by distance formula , we have

\sqrt{(x-6)^2+(0-(-7))^2}=14\ \ \ [\ \because distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}]

Taking square on both the sides , we get

(x-6)^2+7^2=14^2\\\\\Rightarrow\ x^2+6^2-2(6)x+49=196\\\\\Rightarrow\ x^2+36-12x=147\\\\\Rightarrow\ x^2-12x=111\\\\\Rightarrow\ x^2-12x-111=0

Using quadratic formula : x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\dfrac{12\pm\sqrt{(-12)^2-4(1)(-111)}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm\sqrt{144+444}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm\sqrt{588}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm\sqrt{2^2\times7^2\times3}}{2}\\\\\Rightarrow\ x=\dfrac{12\pm14\sqrt{3}}{2}\\\\\Rightarrow\ x=6\pm7\sqrt{3}

so, (6+7\sqrt{3},0)\text{ and }(6-7\sqrt{3},0) are the required points.

since \sqrt{3}=1.732

so, (6+7(1.732),0)\text{ and }(6-7(1.732),0) are the required points.

i.e. (18.124,0) and ( -6.124,0) are the required points.

3 0
3 years ago
Other questions:
  • I really need help on this!
    14·1 answer
  • A 16oz. can of Creamy Corn sells for $1.09, while the 32oz. can is on sale for $1.89. How much would you save with the sale pric
    9·1 answer
  • I need help with my multiplying mixed numbers by whole numbers
    15·1 answer
  • Help I don’t get these
    8·1 answer
  • You receive a gift card for trading cards from a local store. The function d=20-1.95c represents the remaining dollars d on the
    12·1 answer
  • What's is 24/60 as a decimal
    7·1 answer
  • Pls help 10 points I need question 3
    14·1 answer
  • Solve the following: a) 3x2+ 4 9.5 b) 7+2x 5
    15·1 answer
  • What equivalent fraction would assure a whole number divisor 28/0.64
    12·1 answer
  • Through: (1, 3), perp. to y = x + 5
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!