From the calculation, the gravitational force of attraction is 1.33 * 10^-14 N.
<h3>What is the gravitational force?</h3>
The gravitational force is an attractive force that acts between any two masses.
It is given by;
F = Gm1m2/r^2
F = 6.67 * × 10−11 * 2.5 * 5/(250)^2
F = 83.4 × 10−11 /62500
F= 1.33 * 10^-14 N
Learn more about gravitational force:brainly.com/question/12528243
#SPJ1
Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
Answer:
The coastal zone is not a stable and constant environment, but a dynamic place that can change rapidly in response to natural processes such as seasonal weather patterns. Waves, winds, currents, tides and storms are the major forces on the coast.
Explanation:
Answer: 0.47 rad/sec
Explanation:
By definition, the angular velocity is the rate of change of the angle traveled with time, so we can state the following:
ω = ∆θ/ ∆t
Now, we are told that in 13.3 sec, the ball completes one revolution around the circle, which means that, by definition of angle, it has rotated 2 π rad (an arc of 2πr over the radius r), so we can find ω as follows:
ω = 2 π / 13.3 rad/sec = 0.47 rad/sec