Answer:
All of the arrows pointing up that have a red box NOT the arrow pointing down with a red box. (if the blue squigglies on the water are arrows then they count too, the picture is not too clear)
Explanation:
100 ml
100 ml of the stock solution is required to prepare the order.
We know that C1V1 = C2V2
where C1= 2%
V1 = 500ml
C2= 10%
V2 = ?
V2 = C1V1 / C2
= 500 * 2% / 10%
=100
V2 = 100 ml
<h3>What is meant by stock solution?</h3>
- A stock solution is a sizable amount of a typical reagent in a standardized concentration, like sodium hydroxide or hydrochloric acid.
- This phrase is frequently used in analytical chemistry while doing operations like titrations where it's crucial to employ precise solution concentrations.
<h3>What distinguishes a standard solution from a stock solution?</h3>
- The main distinction between stock solution and standard solution is that the former is a highly concentrated solution while the later is a solution whose concentration is precisely known.
- Because standard solutions frequently arrive as stock solutions, the phrases "stock solution" and "standard solution" are connected.
To learn more about stock solution preparation visit:
brainly.com/question/14667249
#SPJ4
Answer:
Amy's speed is 2/3 faster than Bill's
Explanation:
can't believe you don't know how to do this.
Answer:
B) 1.5 m/s
Explanation:
The apparent frequency will be enhanced due to Doppler effect
If f be the apparent frequency , F be the real frequency , V be the velocity of sound and v be the velocity of approaching submarine then f is given by
f = F \frac{V+v}{V-v}\\
\frac{f}{F} =\frac{V+v}{V-v}\\
\frac{f}{F}-1 =\frac{V+v}{V-v}-1\\
\Delta f = \frac{2vf}{V-v}\\
200=\frac{2\times v\times 100\times 1000}{1482-v}\\
v=1.48 m/s
In this problem, we apply the equation regarding kinematics expressed as vf^2 = v0^2 + 2as vf eventually becomes zero because the ball stops in the end. a = -9.8 m/s2s = 2 metres this time
This gives initial velocity, vo equal to 6.26m/s
now 6.26-(-8.85) = 15.11m/s
change in velocity/change in time = average acceleration 15.11/(12/1000) = 1259.167 m/s^2