The frequency f of a wave is defined as the inverse of the period T:

The clock in the problem has a waveform with period

. Therefore, its frequency is
Answer:
a) v² = G M R³, b) T = 2π /
, c) 
Explanation:
a) The kinetic energy is
K = ½ m v²
to find the velocity let's use Newton's second law
F = m a
acceleration is centripetal
a = v² / R
force is the universal force of attraction
F = G m M / r²
we substitute
G m M R² = m v² R
v² = G M R³
the kinetic energy is
K = ½ m G M R³
b) angular and linear velocity are related
v = w R
w = v / R
w =
w =
the angular velocity is related to the period
w = 2π / T
T = 2π / w
we substitute
T = 2π /
c) the angular moeomto is
L = m v r
L = m RA G M R³ R
L = 
Explanation:
C.
Object A will require more force to be set in motion but will travel faster than object B.
2. true
Answer:
To reduce pressure - decrease the force or increase the area the force acts on. If you were standing on a frozen lake and the ice started to crack you could lie down to increase the area in contact with the ice. The same force (your weight) would apply, spread over a larger area, so the pressure would reduce.
Velocity is distance/time
so 150/7200=.0208km/s
unless you have to convert it to miles or something else. but use the formula!