Answer:
The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, T. When a rope supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object: T = mg.
Speed of wave = frequency x wavelength
= 250 x 6 = 1500 m/s.
As the magnet is moved inside a coil of wire, the number of lines of magnetic field passing through the coil changes. Faraday stated that : it is the change in the number of field lines passing through the the coil of wire that induces emf in the loop. Specifically, it is the rate of change in the number of magnetic field lines passing through the loop that determines the induced emf. There is a term called magnetic flux same as electric flux, this magnetic flux can be a measure of the number of field lines passing through a surface. It is given by ( Φ=ΣB. dA. Where B is magnetic field and dA is small elementary area). The induced emf is given by (ξ = dΦ/dt). This equation states that THE MAGNITUDE OF THE INDUCED CURRENT IN A CIRCUIT IS EQUAL TO THE RATE AT WHICH THE MAGNETIC FLUX THROUGH THE CIRCUIT IS CHANGING WITH TIME. So more rapid you move the coil, more will be the change in flux and hence more emf will be produced. So option D is the correct answer. I hope this long description will help you out.
Answer:
The frequency of oscillation of the simple pendulum is 0.49 Hz.
Explanation:
Given that,
Mass of the simple pendulum, m = 0.35 kg
Length of the string to which it is attached, l = 1 m
We need to find the frequency of oscillation. The frequency of oscillation of the simple pendulum is given by :

So, the frequency of oscillation of the simple pendulum is 0.49 Hz. Hence, this is the required solution.
This is just a simple problem finding out the outer surface charge, the inner surface charge and the net charge. Net charge by definition means the difference between two charges. In this case, the formula that is applicable here is outer surface charge = total net charge - inner cavity surface charge. Since we are given already with the net charge equal to 12.0 x10-6 C and the inner charge magnituude f 3.7 x10-6 C, the the total charge must be outer charge is +10x10(-6)) - (-3.0x10(-6)) = +1.3x10(-5) C.
Charges are measured in coloumbs and most likely exist on surfaces of entities like particles, walls etc.