Answer:
Explanation:
a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.
b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or 
c. The period, or T, of a wave is found in the equation
were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:
so
and
T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)
d. The speed of the wave is found in the equation
and since we already have the frequency and we solved for the wavelength already, filling in:
and
v = 50.0(20.0) so
v = 1.00 × 10³ m/s
And there you go!
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
When you touch<span> a doorknob (or something else made of metal), which has a positive charge with few electrons.</span>
Answer:
Option b, pothographs from drones.
Explanation:
the USGS (U.S. Geological Survey) decided to make photographic captures from drones to the volcanic surfaces, which allowed through observations to understand things like the characteristics of the lava, the height of the volcanic plumes (among others).
Podemos ver en el siguiente enlace un ejemplo de fotografía tomada desde un dron al Kilauea.
https://www.usgs.gov/media/images/k-lauea-volcano-drone-over-lava-channel