Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>
Answer:

Explanation:
Intensity is given by the expresion:

where:
Io = inicial intensity
r1= initial distance
r= final distance


In the context of the loop and junction rules for electrical circuits, a junction is where three or more wires are joined.
Answer: Option 2
<u>Explanation:
</u>
An electrical circuits consists of many points like branch, loop, junction, series, bridge, etc. So, loops are the ones where the output of one circuit will act as feedback of the same circuit. If two or more wires passes through a single point, then that point is termed as junction.
If two or three junction connect each other they are termed as branch. Like these several other parameters are there with different rules in the circuit system. For electrical circuits, junction and loop rules state that a junction is the point where more wires joined together.
The sphere’s Electric potential energy is 1.6*
J
Given,
q=6. 5 µc, V=240 v,
We know that sphere’s Electric potential energy(E) = qV=6.5*
=1.6*
J
<h3>Electric potential energy</h3>
The configuration of a certain set of point charges within a given system is connected with the potential energy (measured in joules) known as electric potential energy, which is a product of conservative Coulomb forces. Two crucial factors—its inherent electric charge and its position in relation to other electrically charged objects—can determine whether an object has electric potential energy.
In systems with time-varying electric fields, the potential energy is referred to as "electric potential energy," but in systems with time-invariant electric fields, the potential energy is referred to as "electrostatic potential energy."
A tiny sphere carrying a charge of 6. 5 µc sits in an electric field, at a point where the electric potential is 240 v. what is the sphere’s potential energy?
Learn more about Electric potential energy here:
brainly.com/question/24284560
#SPJ4
Before the launch, the momentum of the (spacecraft + asteroid) was zero. So after the launch, the momentum of the (spacecraft + asteroid) has to be zero.
Momentum = (mass) x (velocity)
Momentum after the launch:
Spacecraft: (1,000 kg) x (250 m/s) = 250,000 kg-m/s
Asteroid: (mass) x (-25 m/s)
Their sum: 250,000 - 25(mass) .
Their sum must be zero, so 250,000 kg-m/s = (25 m/s) x (mass)
Divide each side by 25 : 10,000 kg-m/s = (1 m/s) x (mass)
Divide each side by (1 m/s) : 10,000 kg = mass