Answer:
16m/s/s
Explanation:
Solving for acceleration you do a=Vf-Vi/a and since the car stopped at a red light the Vi is 0m/s and since the car speeds up to 80m/s the Vf is 80m/s and the time is 5s and the answer would be 16m/s/s
Answer:
D. Newton's Third Law of Motion
Explanation:
Newton's law of gravity is definitely not applicable to your hands. So we can cross this bad boy out
Newton's First Law is F=MA (force equals mass times acceleration). This is basically the root of most physics but it isn't the reason for your hand being red after hitting a wall.
Newton's Second law deals with velocities and forces, so even though you are apply a force your are not changing the velocity of the wall much.
Newton's Third Law basically says that for whatever force you apply to an object, that object will apply an equal and opposite force back to you. This is why your hand gets red. When you slap the wall with all your strength, the wall hits your hand back with the same amount of force. The 2nd law can also be seen when you're trying to push a desk and it won't budge. You are pushing on it, but the desk is pushing back. (there are multiple other factors applicable like friction but we physicists like to ignore them :) )
I hope this helps!
A sample of an ideal gas is heated, and its kelvin temperature doubles. The average speed of the molecules in the sample will increases by a factor of
The root-mean square (RMS) velocity is the value of the square root of the sum of the squares of the stacking velocity values divided by the number of values. The RMS velocity is that of a wave through sub-surface layers of different interval velocities along a specific ray path.
Root mean square speed is a statistical measurement of speed.
The root mean square speed can be calculated as : V1 : 
if temperature becomes double
let T1 is initial temperature
So , T2 = 2 * T1
now ,
Root mean square speed will be (V2) = 
=
* 
=
V1
Thus when temperature becomes double, the root mean square speed increases by a factor of
To learn more about root mean square velocity here
brainly.com/question/13751940
#SPJ4